scispace - formally typeset
Open AccessProceedings Article

Learning with Local and Global Consistency

Reads0
Chats0
TLDR
A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points.
Abstract
We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Semi-Supervised Classification with Graph Convolutional Networks

TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Book

Learning Deep Architectures for AI

TL;DR: The motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer modelssuch as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks are discussed.
Journal Article

Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples

TL;DR: A semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner is proposed and properties of reproducing kernel Hilbert spaces are used to prove new Representer theorems that provide theoretical basis for the algorithms.
BookDOI

Semi-Supervised Learning

TL;DR: Semi-supervised learning (SSL) as discussed by the authors is the middle ground between supervised learning (in which all training examples are labeled) and unsupervised training (where no label data are given).
References
More filters

Statistical learning theory

TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Journal ArticleDOI

Nonlinear dimensionality reduction by locally linear embedding.

TL;DR: Locally linear embedding (LLE) is introduced, an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs that learns the global structure of nonlinear manifolds.
Journal ArticleDOI

A global geometric framework for nonlinear dimensionality reduction.

TL;DR: An approach to solving dimensionality reduction problems that uses easily measured local metric information to learn the underlying global geometry of a data set and efficiently computes a globally optimal solution, and is guaranteed to converge asymptotically to the true structure.
Proceedings Article

On Spectral Clustering: Analysis and an algorithm

TL;DR: A simple spectral clustering algorithm that can be implemented using a few lines of Matlab is presented, and tools from matrix perturbation theory are used to analyze the algorithm, and give conditions under which it can be expected to do well.
Book

Spectral Graph Theory

TL;DR: Eigenvalues and the Laplacian of a graph Isoperimetric problems Diameters and eigenvalues Paths, flows, and routing Eigen values and quasi-randomness