scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Least-Squares Methods for Navier-Stokes Boundary Control Problems

01 Jan 1998-International Journal of Computational Fluid Dynamics (Taylor & Francis Group)-Vol. 9, Iss: 1, pp 43-58
TL;DR: In this paper, a least square approach for boundary control with the incompressible Navier-Stokes equations is proposed. But this approach is not suitable for the control of the driven cavity flow arc and it may not achieve the control objectives for high values of the Reynolds number.
Abstract: We develop a least-squares approach for a boundary control problem associated with the incompressible Navier-Stokes equations. Iterative methods are suggested for solution of the discrete nonlinear optimization problem. Results of some computational experiments concerning control of the driven cavity flow arc also presented. These experiments confirm, among other things, a hypothesis due to Desai and Ito, that one-dimensional boundary control may fail to achieve the control objectives for high values of the Reynolds number.
Citations
More filters
01 Jun 1993
TL;DR: In this paper, the authors study the accuracy of least-squares finite element methods for velocity-vorticity-pressure formulations of the incompressible Navier-Stokes equations.
Abstract: Recently there has been substantial interest in least-squares finite element methods for velocity-vorticity-pressure formulations of the incompressible Navier-Stokes equations. The main cause for this interest is the fact that algorithms for the resulting discrete equations can be devised which require the solution of only symmetric, positive definite systems of algebraic equations. On the other hand, it is well-documented that methods using the vorticity as a primary variable often yield very poor approximations. Thus, here we study the accuracy of these methods through a series of computational experiments, and also comment on theoretical error estimates. It is found, despite the failure of standard methods for deriving error estimates, that computational evidence suggests that these methods are, at the least, nearly optimally accurate. Thus, in addition to the desirable matrix properties yielded by least-squares methods, one also obtains accurate approximations.

61 citations

Journal ArticleDOI
TL;DR: In this article, the approximate solution of optimization and control problems for systems governed by the Stokes equations is considered, and the advantages of penalty/least-squares methods for optimal control problems compared to methods based on Lagrange multipliers are highlighted.
Abstract: The approximate solution of optimization and control problems for systems governedby the Stokes equations is considered. Modern computational techniques for such problems are predominantly based on the application of the Lagrange multiplier rule, while penalty formulations, even though widely used in other settings, have not enjoyed the same level of popularity for this class of problems. A discussion is provided that explains why naively defined penalty methods may not be practical. Then, practical penalty methods are defined using methodologies associated with modern least-squares finite-element methods. The advantages, with respect to efficiency, of penalty/leasts-squares methods for optimal control problems compared to methods based on Lagrange multipliers are highlighted. A tracking problem for the Stokes system is used for illustrative purposes.

35 citations

Journal ArticleDOI
TL;DR: An abstract theory is developed that includes optimal error estimates for least-squares finite element methods applied to optimality systems and an application of the theory to optimization problems for the Stokes equations is provided.
Abstract: The approximate solution of optimization and optimal control problems for systems governed by linear, elliptic partial differential equations is considered. Such problems are most often solved using methods based on applying the Lagrange multiplier rule to obtain an optimality system consisting of the state system, an adjoint-state system, and optimality conditions. Galerkin methods applied to this system result in indefinite matrix problems. Here, we consider using modern least-squares finite element methods for the solution of the optimality systems. The matrix equations resulting from this approach are symmetric and positive definite and are readily amenable to uncoupling strategies. This is an important advantage of least-squares principles as they allow for a more efficient computational solution of the optimization problem. We develop an abstract theory that includes optimal error estimates for least-squares finite element methods applied to optimality systems. We then provide an application of the theory to optimization problems for the Stokes equations.

28 citations


Additional excerpts

  • ...Other applications of least-squares finite element methods to optimization problems may be found in [2, 3, 5, 8]....

    [...]

Journal ArticleDOI
TL;DR: The least-squares approximations of an optimal control problem governed by the Stokes equations are considered, which leads to an unconstrained coupled optimization problem by the Lagrange multiplier method, which yields optimal discretization error estimates in the finite element spaces.
Abstract: The least-squares approximations of an optimal control problem governed by the Stokes equations are considered, which leads to an unconstrained coupled optimization problem by the Lagrange multiplier method. The least-squares functionals for the two- and three-dimensional first-order coupled optimality systems are employed by modifying those functionals in [Z. Cai, T. A. Manteuffel, and S. F. McCormick, SIAM J. Numer. Anal., 34 (1997), pp. 1727-1741]. The established ellipticity and continuity in a product $H^1$ norm yield the optimal discretization error estimates in the finite element spaces. For numerical tests, we apply V-cycle multigrid methods to the whole discrete algebraic system.

12 citations


Cites background from "Least-Squares Methods for Navier-St..."

  • ...The applications of least-squares principles to optimality systems were previously discussed in [2], [3], [4], [6], and [7]....

    [...]

Journal ArticleDOI
TL;DR: The existence of a solution of the unconstrained optimal control problem is proved, and the convergence of this solution to that of unpenalized one is demonstrated as the penalty parameter tends to zero.
Abstract: The purpose of this paper is to construct an unconstrained optimal control problem by using a least-squares approach for the constrained distributed optimal control problem associated with incompressible Stokes equations. The constrained equations are reformulated to the equivalent first-order system by introducing vorticity, and then the least-squares functional corresponding to the system is enforced via a penalty term to the objective functional. The existence of a solution of the unconstrained optimal control problem is proved, and the convergence of this solution to that of unpenalized one is demonstrated as the penalty parameter tends to zero. Finite element approximations with error estimates are studied, and the relevant computational experiments are presented.

5 citations


Cites background from "Least-Squares Methods for Navier-St..."

  • ...Least-squares finite element methods for optimality problems have been studied in [1,2,4,5]....

    [...]

References
More filters
Book
19 Jun 1986
TL;DR: This paper presents the results of an analysis of the "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions and its applications to Mixed Approximation and Homogeneous Stokes Equations.
Abstract: I. Mathematical Foundation of the Stokes Problem.- 1. Generalities on Some Elliptic Boundary Value Problems.- 1.1. Basic Concepts on Sobolev Spaces.- 1.2. Abstract Elliptic Theory.- 1.3. Example 1: Dirichlet's Problem for the Laplace Operator.- 1.4. Example 2: Neumann's Problem for the Laplace Operator.- 1.5. Example 3: Dirichlet's Problem for the Biharmonic Operator.- 2. Function Spaces for the Stokes Problem.- 2.1. Preliminary Results.- 2.2. Some Properties of Spaces Related to the Divergence Operator.- 2.3. Some Properties of Spaces Related to the Curl Operator.- 3. A Decomposition of Vector Fields.- 3.1. Decomposition of Two-Dimensional Vector Fields.- 3.2. Application to the Regularity of Functions of H(div ?) ? H(curl ?).- 3.3. Decomposition of Three-Dimensional Vector Fields.- 3.4. The Imbedding of H(div ?) ? H0 (curl ?) into H1(?)3.- 3.5. The Imbedding of H0(div ?) ? H (curl ?) into H1(?)3.- 4. Analysis of an Abstract Variational Problem.- 4.1. A General Result.- 4.2. A Saddle-Point Approach.- 4.3. Approximation by Regularization or Penalty.- 4.4. Iterative Methods of Gradient Type.- 5. The Stokes Equations.- 5.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 5.2. The Stream Function Formulation of the Dirichlet Problem in Two Dimensions.- 5.3. The Three-Dimensional Case.- Appendix A. Results of Standard Finite Element Approximation.- A.l. Triangular Finite Elements.- A.2. Quadrilateral Finite Elements.- A.3. Interpolation of Discontinuous Functions.- II. Numerical Solution of the Stokes Problem in the Primitive Variables.- 1. General Approximation.- 1.1. An Abstract Approximation Result.- 1.2. Decoupling the Computation of uh and ?h.- 1.3. Application to the Homogeneous Stokes Problem.- 1.4. Checking the inf-sup Condition.- 2. Simplicial Finite Element Methods Using Discontinuous Pressures.- 2.1. A First Order Approximation on Triangular Elements.- 2.2. Higher-Order Approximation on Triangular Elements.- 2.3. The Three-Dimensional case: First and Higher-Order Schemes.- 3. Quadrilateral Finite Element Methods Using Discontinuous Pressures.- 3.1. A quadrilateral Finite Element of Order One.- 3.2. Higher-Order Quadrilateral Elements.- 3.3. An Example of Checkerboard Instability: the Q1 - P0 Element.- 3.4. Error Estimates for the Q1 - P0 Element.- 4. Continuous Approximation of the Pressure.- 4.1. A First Order Method: the "Mini" Finite Element.- 4.2. The "Hood-Taylor" Finite Element Method.- 4.3. The "Glowinski-Pironneau" Finite Element Method.- 4.4. Implementation of the Glowinski-Pironneau Scheme.- III. Incompressible Mixed Finite Element Methods for Solving the Stokes Problem.- 1. Mixed Approximation of an Abstract Problem.- 1.1. A Mixed Variational Problem.- 1.2. Abstract Mixed Approximation.- 2. The "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions.- 2.1. A Mixed Formulation.- 2.2. Mixed Approximation and Application to Finite Elements of Degree l.- 2.3. The Technique of Mesh-Dependent Norms.- 3. Further Topics on the "Stream Function-Vorticity-Pressure" Scheme.- 3.1. Refinement of the Error Analysis.- 3.2. Super Convergence Using Quadrilateral Finite Elements of Degree l.- 4. A "Stream Function-Gradient of Velocity Tensor" Method in Two Dimensions.- 4.1. The Hellan-Herrmann-Johnson Formulation.- 4.2. Approximation with Triangular Finite Elements of Degree l.- 4.3. Additional Results for the Hellan-Herrmann-Johnson Scheme.- 4.4. Discontinuous Approximation of the Pressure.- 5. A "Vector Potential-Vorticity" Scheme in Three Dimensions.- 5.1. A Mixed Formulation of the Three-Dimensional Stokes Problem.- 5.2. Mixed Approximation in H(curl ?).- 5.3. A Family of Conforming Finite Elements in H(curl ?).- 5.4. Error Analysis for Finite Elements of Degree l.- 5.5. Discontinuous Approximation of the Pressure.- IV. Theory and Approximation of the Navier-Stokes Problem.- 1. A Class of Nonlinear Problems.- s Problem for the Laplace Operator.- 1.5. Example 3: Dirichlet's Problem for the Biharmonic Operator.- 2. Function Spaces for the Stokes Problem.- 2.1. Preliminary Results.- 2.2. Some Properties of Spaces Related to the Divergence Operator.- 2.3. Some Properties of Spaces Related to the Curl Operator.- 3. A Decomposition of Vector Fields.- 3.1. Decomposition of Two-Dimensional Vector Fields.- 3.2. Application to the Regularity of Functions of H(div ?) ? H(curl ?).- 3.3. Decomposition of Three-Dimensional Vector Fields.- 3.4. The Imbedding of H(div ?) ? H0 (curl ?) into H1(?)3.- 3.5. The Imbedding of H0(div ?) ? H (curl ?) into H1(?)3.- 4. Analysis of an Abstract Variational Problem.- 4.1. A General Result.- 4.2. A Saddle-Point Approach.- 4.3. Approximation by Regularization or Penalty.- 4.4. Iterative Methods of Gradient Type.- 5. The Stokes Equations.- 5.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 5.2. The Stream Function Formulation of the Dirichlet Problem in Two Dimensions.- 5.3. The Three-Dimensional Case.- Appendix A. Results of Standard Finite Element Approximation.- A.l. Triangular Finite Elements.- A.2. Quadrilateral Finite Elements.- A.3. Interpolation of Discontinuous Functions.- II. Numerical Solution of the Stokes Problem in the Primitive Variables.- 1. General Approximation.- 1.1. An Abstract Approximation Result.- 1.2. Decoupling the Computation of uh and ?h.- 1.3. Application to the Homogeneous Stokes Problem.- 1.4. Checking the inf-sup Condition.- 2. Simplicial Finite Element Methods Using Discontinuous Pressures.- 2.1. A First Order Approximation on Triangular Elements.- 2.2. Higher-Order Approximation on Triangular Elements.- 2.3. The Three-Dimensional case: First and Higher-Order Schemes.- 3. Quadrilateral Finite Element Methods Using Discontinuous Pressures.- 3.1. A quadrilateral Finite Element of Order One.- 3.2. Higher-Order Quadrilateral Elements.- 3.3. An Example of Checkerboard Instability: the Q1 - P0 Element.- 3.4. Error Estimates for the Q1 - P0 Element.- 4. Continuous Approximation of the Pressure.- 4.1. A First Order Method: the "Mini" Finite Element.- 4.2. The "Hood-Taylor" Finite Element Method.- 4.3. The "Glowinski-Pironneau" Finite Element Method.- 4.4. Implementation of the Glowinski-Pironneau Scheme.- III. Incompressible Mixed Finite Element Methods for Solving the Stokes Problem.- 1. Mixed Approximation of an Abstract Problem.- 1.1. A Mixed Variational Problem.- 1.2. Abstract Mixed Approximation.- 2. The "Stream Function-Vorticity-Pressure" Method for the Stokes Problem in Two Dimensions.- 2.1. A Mixed Formulation.- 2.2. Mixed Approximation and Application to Finite Elements of Degree l.- 2.3. The Technique of Mesh-Dependent Norms.- 3. Further Topics on the "Stream Function-Vorticity-Pressure" Scheme.- 3.1. Refinement of the Error Analysis.- 3.2. Super Convergence Using Quadrilateral Finite Elements of Degree l.- 4. A "Stream Function-Gradient of Velocity Tensor" Method in Two Dimensions.- 4.1. The Hellan-Herrmann-Johnson Formulation.- 4.2. Approximation with Triangular Finite Elements of Degree l.- 4.3. Additional Results for the Hellan-Herrmann-Johnson Scheme.- 4.4. Discontinuous Approximation of the Pressure.- 5. A "Vector Potential-Vorticity" Scheme in Three Dimensions.- 5.1. A Mixed Formulation of the Three-Dimensional Stokes Problem.- 5.2. Mixed Approximation in H(curl ?).- 5.3. A Family of Conforming Finite Elements in H(curl ?).- 5.4. Error Analysis for Finite Elements of Degree l.- 5.5. Discontinuous Approximation of the Pressure.- IV. Theory and Approximation of the Navier-Stokes Problem.- 1. A Class of Nonlinear Problems.- 2. Theory of the Steady-State Navier-Stokes Equations.- 2.1. The Dirichlet Problem in the Velocity-Pressure Formulation.- 2.2. The Stream Function Formulation of the Homogeneous Problem..- 3. Approximation of Branches of Nonsingular Solutions.- 3.1. An Abstract Framework.- 3.2. Approximation of Branches of Nonsingular Solutions.- 3.3. Application to a Class of Nonlinear Problems.- 3.4. Non-Differentiable Approximation of Branches of Nonsingular Solutions.- 4. Numerical Analysis of Centered Finite Element Schemes.- 4.1. Formulation in Primitive Variables: Methods Using Discontinuous Pressures.- 4.2. Formulation in Primitive Variables: the Case of Continuous Pressures.- 4.3. Mixed Incompressible Methods: the "Stream Function-Vorticity" Formulation.- 4.4. Remarks on the "Stream Function-Gradient of Velocity Tensor" Scheme.- 5. Numerical Analysis of Upwind Schemes.- 5.1. Upwinding in the Stream Function-Vorticity Scheme.- 5.2. Error Analysis of the Upwind Scheme.- 5.3. Approximating the Pressure with the Upwind Scheme.- 6. Numerical Algorithms.- 2.11. General Methods of Descent and Application to Gradient Methods.- 2.12. Least-Squares and Gradient Methods to Solve the Navier-Stokes Equations.- 2.13. Newton's Method and the Continuation Method.- References.- Index of Mathematical Symbols.

5,572 citations

Journal ArticleDOI
TL;DR: The vorticity-stream function formulation of the two-dimensional incompressible NavierStokes equations is used to study the effectiveness of the coupled strongly implicit multigrid (CSI-MG) method in the determination of high-Re fine-mesh flow solutions.

4,018 citations

Journal ArticleDOI
TL;DR: Brezzi et al. as discussed by the authors proposed a method to solve the problem of unbalanced matematization by using an algebraic numerology lab. But their method is not suitable for unsupervised matematics.
Abstract: Note: Univ paris 6,f-75230 paris 05,france. ecole polytech,ctr math appl,f-91128 palaiseau,france. univ pavia,cnr,anal numer lab,i-27100 pavia,italy. Brezzi, f, univ pavia,ist matemat appl,i-27100 pavia,italy.ISI Document Delivery No.: KU350Times Cited: 125Cited Reference Count: 12 Reference ASN-ARTICLE-1980-001doi:10.1007/BF01395985 Record created on 2006-08-24, modified on 2017-05-12

358 citations

Book
01 Jan 1979

203 citations

Journal ArticleDOI
TL;DR: In this article, the least square finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems.

168 citations