scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Lectures on Theoretical Physics

01 Nov 1951-Nature (Nature Publishing Group)-Vol. 168, Iss: 4282, pp 887-887
TL;DR: In this article, Sommerfeld presents a review of the theoretic aspects of Physik, including Mechanik, Elektrodynamik and Partielle Differentialgleichungen der Physik.
Abstract: Vorlesungen uber theoretische Physik Von Prof. Arnold Sommerfeld. Band 1: Mechanik. Vierte, neubearbeitete Auflage. Pp. xii + 276. 18 D. marks. Band 2: Mechanik der deformierbaren Medien. Pp. xv + 376 + 4 plates. 18 D. marks. Band 3: Elektrodynamik. Pp. xvi + 368. 18 D. marks. Band 6: Partielle Differentialgleichungen der Physik. Pp. xiii + 332. 18 D. marks. (Wiesbaden: Dieterich'sche Verlagsbuchhandlung, 1947–1949.)

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical formulation of supersymmetric quantum mechanics and discuss many applications, including shape invariance and operator transformations, and show that a supersymmetry inspired WKB approximation is exact for a class of shape invariant potentials.

2,688 citations

Journal ArticleDOI
TL;DR: In this paper, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail, based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry.

1,482 citations

Journal ArticleDOI
TL;DR: In this article, the medium-induced p⊥-broadening and induced gluon radiation spectrum of a high energy quark traversing a large nucleus is studied.

1,062 citations


Cites methods from "Lectures on Theoretical Physics"

  • ...The Gyulassy-Wang model [2] used in II to describe multiple scatterings in hot matter is here replaced by the Glauber model [3] of multiple scattering in which parton-nucleus scattering is given in terms of independent scatterings off the nucleons making up the nucleus....

    [...]

Journal ArticleDOI
TL;DR: A review of the theoretical background, experimental techniques, and phenomenology of what is called the "Glauber Model" in relativistic heavy ion physics is presented in this article, with emphasis on its development into the purely classical, geometric picture that is used for present-day data analyses.
Abstract: This is a review of the theoretical background, experimental techniques, and phenomenology of what is called the "Glauber Model" in relativistic heavy ion physics. This model is used to calculate "geometric" quantities, which are typically expressed as impact parameter (b), number of participating nucleons (N_part) and number of binary nucleon-nucleon collisions (N_coll). A brief history of the original Glauber model is presented, with emphasis on its development into the purely classical, geometric picture that is used for present-day data analyses. Distinctions are made between the "optical limit" and Monte Carlo approaches, which are often used interchangably but have some essential differences in particular contexts. The methods used by the four RHIC experiments are compared and contrasted, although the end results are reassuringly similar for the various geometric observables. Finally, several important RHIC measurements are highlighted that rely on geometric quantities, estimated from Glauber calculations, to draw insight from experimental observables. The status and future of Glauber modeling in the next generation of heavy ion physics studies is briefly discussed.

858 citations

Journal ArticleDOI
B. I. Abelev1, Madan M. Aggarwal2, Zubayer Ahammed3, B. D. Anderson4  +367 moreInstitutions (47)
TL;DR: In this article, the authors measured the charged-particle spectra at the BNL Relativistic Heavy Ion Collider (RHIC) time projection chamber and reported the average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates as a function of collision system and centrality.
Abstract: Identified charged-particle spectra of pi(+/-), K(+/-), p, and (p) over bar at midrapidity (vertical bar y vertical bar < 0.1) measured by the dE/dx method in the STAR (solenoidal tracker at the BNL Relativistic Heavy Ion Collider) time projection chamber are reported for pp and d + Au collisions at root s(NN) = 200 GeV and for Au + Au collisions at 62.4, 130, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged-particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm(3) for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters because of the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase-transition temperature, suggesting that chemical freeze-out happens in the vicinity of hadronization and the chemical freeze-out temperature is universal despite the vastly different initial conditions in the collision systems. The extracted kinetic freeze-out temperature, while similar to the chemical freeze-out temperature in pp, d + Au, and peripheral Au + Au collisions, drops significantly with centrality in Au + Au collisions, whereas the extracted transverse radial flow velocity increases rapidly with centrality. There appears to be a prolonged period of particle elastic scatterings from chemical to kinetic freeze-out in central Au + Au collisions. The bulk properties extracted at chemical and kinetic freeze-out are observed to evolve smoothly over the measured energy range, collision systems, and collision centralities.

784 citations


Cites methods from "Lectures on Theoretical Physics"

  • ...Unfortunately, Npart, Ncoll and the transverse overlap area S⊥ cannot be measured directly from collider experiments, so they have to be extracted from the measured multiplicity distributions via models, such as the Glauber model [34, 35]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical formulation of supersymmetric quantum mechanics and discuss many applications, including shape invariance and operator transformations, and show that a supersymmetry inspired WKB approximation is exact for a class of shape invariant potentials.

2,688 citations

Journal ArticleDOI
TL;DR: In this paper, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail, based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry.

1,482 citations

Journal ArticleDOI
TL;DR: In this article, the medium-induced p⊥-broadening and induced gluon radiation spectrum of a high energy quark traversing a large nucleus is studied.

1,062 citations

Journal ArticleDOI
TL;DR: A review of the theoretical background, experimental techniques, and phenomenology of what is called the "Glauber Model" in relativistic heavy ion physics is presented in this article, with emphasis on its development into the purely classical, geometric picture that is used for present-day data analyses.
Abstract: This is a review of the theoretical background, experimental techniques, and phenomenology of what is called the "Glauber Model" in relativistic heavy ion physics. This model is used to calculate "geometric" quantities, which are typically expressed as impact parameter (b), number of participating nucleons (N_part) and number of binary nucleon-nucleon collisions (N_coll). A brief history of the original Glauber model is presented, with emphasis on its development into the purely classical, geometric picture that is used for present-day data analyses. Distinctions are made between the "optical limit" and Monte Carlo approaches, which are often used interchangably but have some essential differences in particular contexts. The methods used by the four RHIC experiments are compared and contrasted, although the end results are reassuringly similar for the various geometric observables. Finally, several important RHIC measurements are highlighted that rely on geometric quantities, estimated from Glauber calculations, to draw insight from experimental observables. The status and future of Glauber modeling in the next generation of heavy ion physics studies is briefly discussed.

858 citations

Journal ArticleDOI
B. I. Abelev1, Madan M. Aggarwal2, Zubayer Ahammed3, B. D. Anderson4  +367 moreInstitutions (47)
TL;DR: In this article, the authors measured the charged-particle spectra at the BNL Relativistic Heavy Ion Collider (RHIC) time projection chamber and reported the average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates as a function of collision system and centrality.
Abstract: Identified charged-particle spectra of pi(+/-), K(+/-), p, and (p) over bar at midrapidity (vertical bar y vertical bar < 0.1) measured by the dE/dx method in the STAR (solenoidal tracker at the BNL Relativistic Heavy Ion Collider) time projection chamber are reported for pp and d + Au collisions at root s(NN) = 200 GeV and for Au + Au collisions at 62.4, 130, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged-particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm(3) for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters because of the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase-transition temperature, suggesting that chemical freeze-out happens in the vicinity of hadronization and the chemical freeze-out temperature is universal despite the vastly different initial conditions in the collision systems. The extracted kinetic freeze-out temperature, while similar to the chemical freeze-out temperature in pp, d + Au, and peripheral Au + Au collisions, drops significantly with centrality in Au + Au collisions, whereas the extracted transverse radial flow velocity increases rapidly with centrality. There appears to be a prolonged period of particle elastic scatterings from chemical to kinetic freeze-out in central Au + Au collisions. The bulk properties extracted at chemical and kinetic freeze-out are observed to evolve smoothly over the measured energy range, collision systems, and collision centralities.

784 citations