scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle

01 Jun 2013-Global Biogeochemical Cycles (Wiley-Blackwell)-Vol. 27, Iss: 2, pp 410-421
TL;DR: In this article, a global biogeochemical model with fully coupled atmospheric, terrestrial, and oceanic Hg reservoirs is presented to better understand human influence on Hg cycling and timescales for responses.
Abstract: [1] Elevated mercury (Hg) in marine and terrestrial ecosystems is a global health concern because of the formation of toxic methylmercury. Humans have emitted Hg to the atmosphere for millennia, and this Hg has deposited and accumulated into ecosystems globally. Here we present a global biogeochemical model with fully coupled atmospheric, terrestrial, and oceanic Hg reservoirs to better understand human influence on Hg cycling and timescales for responses. We drive the model with a historical inventory of anthropogenic emissions from 2000 BC to present. Results show that anthropogenic perturbations introduced to surface reservoirs (atmosphere, ocean, or terrestrial) accumulate and persist in the subsurface ocean for decades to centuries. The simulated present-day atmosphere is enriched by a factor of 2.6 relative to 1840 levels, consistent with sediment archives, and by a factor of 7.5 relative to natural levels (2000 BC). Legacy anthropogenic Hg re-emitted from surface reservoirs accounts for 60% of present-day atmospheric deposition, compared to 27% from primary anthropogenic emissions, and 13% from natural sources. We find that only 17% of the present-day Hg in the surface ocean is natural and that half of its anthropogenic enrichment originates from pre-1950 emissions. Although Asia is presently the dominant contributor to primary anthropogenic emissions, only 17% of the surface ocean reservoir is of Asian anthropogenic origin, as compared to 30% of North American and European origin. The accumulated burden of legacy anthropogenic Hg means that future deposition will increase even if primary anthropogenic emissions are held constant. Aggressive global Hg emission reductions will be necessary just to maintain oceanic Hg concentrations at present levels.
Figures (10)

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Understanding of sources, atmosphere-land-ocean Hg dynamics and health effects are synthesized, and integration of Hg science with national and international policy efforts is needed to target efforts and evaluate efficacy.
Abstract: Mercury (Hg) is a global pollutant that affects human and ecosystem health. We synthesize understanding of sources, atmosphere-land-ocean Hg dynamics and health effects, and consider the implications of Hg-control policies. Primary anthropogenic Hg emissions greatly exceed natural geogenic sources, resulting in increases in Hg reservoirs and subsequent secondary Hg emissions that facilitate its global distribution. The ultimate fate of emitted Hg is primarily recalcitrant soil pools and deep ocean waters and sediments. Transfers of Hg emissions to largely unavailable reservoirs occur over the time scale of centuries, and are primarily mediated through atmospheric exchanges of wet/dry deposition and evasion from vegetation, soil organic matter and ocean surfaces. A key link between inorganic Hg inputs and exposure of humans and wildlife is the net production of methylmercury, which occurs mainly in reducing zones in freshwater, terrestrial, and coastal environments, and the subsurface ocean. Elevated human exposure to methylmercury primarily results from consumption of estuarine and marine fish. Developing fetuses are most at risk from this neurotoxin but health effects of highly exposed populations and wildlife are also a concern. Integration of Hg science with national and international policy efforts is needed to target efforts and evaluate efficacy.

1,631 citations

Journal ArticleDOI
TL;DR: In this article, a simple linear regression between log10 transformed mercury (Hg) concentration and stable nitrogen isotope values (δ15N), hereafter called trophic magnification slope (TMS), was used to represent the overall degree of Hg biomagnification.
Abstract: The slope of the simple linear regression between log10 transformed mercury (Hg) concentration and stable nitrogen isotope values (δ15N), hereafter called trophic magnification slope (TMS), from several trophic levels in a food web can represent the overall degree of Hg biomagnification. We compiled data from 69 studies that determined total Hg (THg) or methyl Hg (MeHg) TMS values in 205 aquatic food webs worldwide. Hg TMS values were compared against physicochemical and biological factors hypothesized to affect Hg biomagnification in aquatic systems. Food webs ranged across 1.7 ± 0.7 (mean ± SD) and 1.8 ± 0.8 trophic levels (calculated using δ15N from baseline to top predator) for THg and MeHg, respectively. The average trophic level (based on δ15N) of the upper-trophic-level organisms in the food web was 3.7 ± 0.8 and 3.8 ± 0.8 for THg and MeHg food webs, respectively. For MeHg, the mean TMS value was 0.24 ± 0.08 but varied from 0.08 to 0.53 and was, on average, 1.5 times higher than that for THg with a...

634 citations

Journal ArticleDOI
TL;DR: Estimates of gaseous Hg0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants.
Abstract: We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4–5.3 Gt), terrestrial environments (particularly soils: 250–1000 Gg), and aquatic ecosystems (e.g., oceans: 270–450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg0 concentrations and HgII wet deposition in Europe and the US (− 1.5 to − 2.2% per year). Smaller atmospheric Hg0 declines (− 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized HgII in the tropical and subtropical free troposphere where deep convection can scavenge these HgII reservoirs. As a result, up to 50% of total global wet HgII deposition has been predicted to occur to tropical oceans. Ocean Hg0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900–4200 Mg/year). Enhanced seawater Hg0 levels suggest enhanced Hg0 ocean evasion in the intertropical convergence zone, which may be linked to high HgII deposition. Estimates of gaseous Hg0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants. Litterfall deposition by plants is now estimated at 1020–1230 Mg/year globally. Stable isotope analysis and direct flux measurements provide evidence that in many ecosystems Hg0 deposition via plant inputs dominates, accounting for 57–94% of Hg in soils. Of global aquatic Hg releases, around 50% are estimated to occur in China and India, where Hg drains into the West Pacific and North Indian Oceans. A first inventory of global freshwater Hg suggests that inland freshwater Hg releases may be dominated by artisanal and small-scale gold mining (ASGM; approximately 880 Mg/year), industrial and wastewater releases (220 Mg/year), and terrestrial mobilization (170–300 Mg/year). For pelagic ocean regions, the dominant source of Hg is atmospheric deposition; an exception is the Arctic Ocean, where riverine and coastal erosion is likely the dominant source. Ocean water Hg concentrations in the North Atlantic appear to have declined during the last several decades but have increased since the mid-1980s in the Pacific due to enhanced atmospheric deposition from the Asian continent. Finally, we provide examples of ongoing and anticipated changes in Hg cycling due to emission, climate, and land use changes. It is anticipated that future emissions changes will be strongly dependent on ASGM, as well as energy use scenarios and technology requirements implemented under the Minamata Convention. We predict that land use and climate change impacts on Hg cycling will be large and inherently linked to changes in ecosystem function and global atmospheric and ocean circulations. Our ability to predict multiple and simultaneous changes in future Hg global cycling and human exposure is rapidly developing but requires further enhancement.

431 citations


Cites background from "Legacy impacts of all‐time anthropo..."

  • ...…using additional observational constraints (Streets et al. 2011; Horowitz et al. 2014) estimate higher present-day organic soil Hg pools (250–1000 Gg with a best estimate of 500 Gg) and propose that anthropogenic activities have doubled the Hg stored in organic soils (Amos et al. 2013, 2015)....

    [...]

  • ...…of modeling tools that collapse the necessary detail from global simulations into more computationally feasible geochemical box models, enabling fully coupled simula- tions of the interactions among the land, atmosphere, and oceans over millennial time scales (Amos et al. 2013, 2014, 2015)....

    [...]

  • ...…atmospheric Hg reservoir is estimated to be between 4400 and 5300 Mg, and is enriched by more than an order of magnitude relative to natural levels and by approximately three- to fivefold relative to 1850 levels (Amos et al. 2013; Engstrom et al. 2014; Horowitz et al. 2017; Streets et al. 2017)....

    [...]

  • ...Amos et al. (2013) predicted that legacy Hg will be present in global ecosystems for periods ranging from decades to millennia, suggesting a large time lag in response to changes in anthropogenic emissions and climate....

    [...]

Journal ArticleDOI
07 Aug 2014-Nature
TL;DR: In this paper, the authors present an estimate of the total amount and spatial distribution of anthropogenic mercury in the global ocean based on oceanographic measurements of mercury and related parameters from several expeditions including data from recent GEOTRACES cruises.
Abstract: GEOTRACES sampling of deep water from the Atlantic, Pacific and Southern oceans allows an estimate of the amount (tripled in surface waters) and distribution (two-thirds increase in water less than a thousand metres deep) of anthropogenic mercury accumulating in the global ocean. Large amounts of the toxic trace metal mercury have been released into the environment as a result of human activities such as mining and burning of fossil fuels. Estimates of the amount of mercury that have reached the ocean as a result of such anthropogenic activities remain uncertain and are largely based on model studies. This paper presents an estimate of the total amount and spatial distribution of anthropogenic mercury in the global ocean based on oceanographic measurements of mercury and related parameters from several expeditions including data from recent GEOTRACES cruises. The findings suggest that there has been a tripling of the surface water mercury content and a ∼150% increase in the amount of mercury in the underlying thermocline water layer. Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion1,2. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by 36–1,313 million moles since the 1500s2,3,4,5,6,7,8,9. Such predictions have remained largely untested owing to a lack of appropriate historical data and natural archives. Here we report oceanographic measurements of total dissolved mercury and related parameters from several recent expeditions to the Atlantic, Pacific, Southern and Arctic oceans. We find that deep North Atlantic waters and most intermediate waters are anomalously enriched in mercury relative to the deep waters of the South Atlantic, Southern and Pacific oceans, probably as a result of the incorporation of anthropogenic mercury. We estimate the total amount of anthropogenic mercury present in the global ocean to be 290 ± 80 million moles, with almost two-thirds residing in water shallower than a thousand metres. Our findings suggest that anthropogenic perturbations to the global mercury cycle have led to an approximately 150 per cent increase in the amount of mercury in thermocline waters and have tripled the mercury content of surface waters compared to pre-anthropogenic conditions. This information may aid our understanding of the processes and the depths at which inorganic mercury species are converted into toxic methyl mercury and subsequently bioaccumulated in marine food webs.

383 citations

Journal ArticleDOI
TL;DR: Atmosphere and at Atmospheric Interfaces: A Review and Future Directions Parisa A. Ariya, Marc Amyot, Ashu Dastoor, Daniel Deeds, Aryeh Feinberg, Gregor Kos, Andrei Ryjkov, Kirill Semeniuk, M. Subir, and Kenjiro Toyota are authors.
Abstract: Atmosphere and at Atmospheric Interfaces: A Review and Future Directions Parisa A. Ariya,*,†,‡ Marc Amyot, Ashu Dastoor, Daniel Deeds,‡ Aryeh Feinberg,† Gregor Kos,‡ Alexandre Poulain, Andrei Ryjkov, Kirill Semeniuk, M. Subir, and Kenjiro Toyota †Department of Chemistry and ‡Department of Atmospheric and Oceanic Sciences, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6 Department of Biological Sciences, Universite ́ de Montreál, 90 avenue Vincent-d’Indy, Montreal, Quebec, Canada, H3C 3J7 Air Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, Quebec, Canada, H9P 1J3 Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada, K1N 6N5 Department of Chemistry, Ball State University, 2000 West University Avenue, Muncie, Indiana 47306, United States Air Quality Research Division, Environment Canada, 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4

296 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a modeling approach aimed at seasonal resolution of global climatic and edaphic controls on patterns of terrestrial ecosystem production and soil microbial respiration using satellite imagery (Advanced Very High Resolution Radiometer and International Satellite Cloud Climatology Project solar radiation), along with historical climate (monthly temperature and precipitation) and soil attributes (texture, C and N contents) from global (1°) data sets as model inputs.
Abstract: This paper presents a modeling approach aimed at seasonal resolution of global climatic and edaphic controls on patterns of terrestrial ecosystem production and soil microbial respiration. We use satellite imagery (Advanced Very High Resolution Radiometer and International Satellite Cloud Climatology Project solar radiation), along with historical climate (monthly temperature and precipitation) and soil attributes (texture, C and N contents) from global (1°) data sets as model inputs. The Carnegie-Ames-Stanford approach (CASA) Biosphere model runs on a monthly time interval to simulate seasonal patterns in net plant carbon fixation, biomass and nutrient allocation, litterfall, soil nitrogen mineralization, and microbial CO2 production. The model estimate of global terrestrial net primary production is 48 Pg C yr−1 with a maximum light use efficiency of 0.39 g C MJ−1PAR. Over 70% of terrestrial net production takes place between 30°N and 30°S latitude. Steady state pools of standing litter represent global storage of around 174 Pg C (94 and 80 Pg C in nonwoody and woody pools, respectively), whereas the pool of soil C in the top 0.3 m that is turning over on decadal time scales comprises 300 Pg C. Seasonal variations in atmospheric CO2 concentrations from three stations in the Geophysical Monitoring for Climate Change Flask Sampling Network correlate significantly with estimated net ecosystem production values averaged over 50°–80° N, 10°–30° N, and 0°–10° N.

2,398 citations

Journal ArticleDOI
TL;DR: In this paper, a 2° resolution global climatology of the mixed layer depth (MLD) based on individual profiles is constructed and a new global seasonal estimation of barrier layer thickness is also provided.
Abstract: [1] A new 2° resolution global climatology of the mixed layer depth (MLD) based on individual profiles is constructed. Previous global climatologies have been based on temperature or density-gridded climatologies. The criterion selected is a threshold value of temperature or density from a near-surface value at 10 m depth (ΔT = 0.2°C or Δσθ = 0.03 kg m−3). A validation of the temperature criterion on moored time series data shows that the method is successful at following the base of the mixed layer. In particular, the first spring restratification is better captured than with a more commonly used larger criteria. In addition, we show that for a given 0.2°C criterion, the MLD estimated from averaged profiles results in a shallow bias of 25% compared to the MLD estimated from individual profiles. A new global seasonal estimation of barrier layer thickness is also provided. An interesting result is the prevalence in mid- and high-latitude winter hemispheres of vertically density-compensated layers, creating an isopycnal but not mixed layer. Consequently, we propose an optimal estimate of MLD based on both temperature and density data. An independent validation of the maximum annual MLD with oxygen data shows that this oxygen estimate may be biased in regions of Ekman pumping or strong biological activity. Significant differences are shown compared to previous climatologies. The timing of the seasonal cycle of the mixed layer is shifted earlier in the year, and the maximum MLD captures finer structures and is shallower. These results are discussed in light of the different approaches and the choice of criterion.

2,345 citations


"Legacy impacts of all‐time anthropo..." refers methods in this paper

  • ...Based on the work of Nriagu [1993] and Streets et al....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors provided an up-to-date assessment of global mercury emissions from anthropogenic and natural sources, including re-emission processes and primary emissions from natural reservoirs.
Abstract: . This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr−1), artisanal small scale gold mining (400 Mg yr−1), non-ferrous metals manufacturing (310 Mg yr−1), cement production (236 Mg yr−1), waste disposal (187 Mg yr−1) and caustic soda production (163 Mg yr−1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

1,240 citations

Journal ArticleDOI
TL;DR: A review of the available information on global Hg cycling shows that the atmosphere and surface ocean are in rapid equilibrium; the evasion of Hg0 from the oceans is balanced by the total oceanic deposition of hg(II) from the atmosphere as mentioned in this paper.

1,027 citations

Journal ArticleDOI
TL;DR: A review of the weaknesses in interpretation and the choice of information that has been used to argue against atmospheric Hg contamination can be found in this paper, where the authors examine the weaknesses of the information used to support the prevailing scientific view that natural geologic sources are the principal contributors of Hg.
Abstract: Elevated levels of mercury in aquatic environments remote from industrial sources have been broadly attributed to long-range atmospheric transport and deposition of anthropogenic Hg. Evidence in support of this prevailing scientific viewglobal biogeochemical Hg models, sedimentary archives of historic Hg fluxes, and geographic trends in soil Hghave been challenged as being insuf ficiently rigorous to rule out the alternative explanation that natural geologic sources are the principal contributors of Hg in remote locations. In this review, we examine the weaknesses in interpretation and the choice of information that has been used to argue against atmospheric Hg contamination. Analytical advances in measuring trace levels of environmental Hg have greatly narrowed estimates of natural Hg fluxes, providing a clear measure of the relative magnitude of anthropogenic Hg emissions and deposition. Recent experimental results indicate that diagenetic processes cannot explain the mounting number of lake sediment an...

972 citations


"Legacy impacts of all‐time anthropo..." refers background in this paper

  • ...[4] Sedimentary and ice core records provide evidence of a two- to five-fold enrichment in present-day atmospheric Hg deposition relative to preindustrial (ca. 1840) levels [Fitzgerald et al., 1998; Schuster et al., 2002; Biester et al., 2007; Lindberg et al., 2007]....

    [...]

  • ...Although Asia is presently the dominant contributor to primary anthropogenic emissions, only 17% of the surface ocean reservoir is of Asian anthropogenic origin, as compared to 30% of North American and European origin....

    [...]