scispace - formally typeset

Journal ArticleDOI

Lengthwise jute fibre properties variation and its effect on jute–polyester composite

24 May 2019-Journal of The Textile Institute (Taylor & Francis)-Vol. 110, Iss: 12, pp 1695-1702

Abstract: In this study, the jute reeds were equally divided lengthwise from root to tip in three portions namely root, middle and tip. The fibre diameter, fineness, tensile strength and bundle stren...
Citations
More filters

Journal ArticleDOI
12 Oct 2019-Polymers
TL;DR: An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications.
Abstract: Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.

249 citations


Cites background from "Lengthwise jute fibre properties va..."

  • ...It has been seen that along with the length of a raw jute reed, tensile strength and bundle strength decrease from root to tip, with the root portion-based composite carrying 44% and 35% higher tensile and flexural strength, respectively, than that of the composites made from the tip portion of raw jute reed [92,93]....

    [...]

  • ...[92,93] Jute Polyester, PP Ropes, roofing, door panels....

    [...]

  • ...[82,92] Polyester Durable, resistance to water, chemicals Structural...

    [...]


Journal ArticleDOI
13 Sep 2020-Fibers
Abstract: Woven jute fabric was used as a reinforcing material for making two types of composite, named Jute/PR and Jute/Epoxy, with two different matrixes of polyester resin and epoxy, respectively, by hand layup techniques. Five different doses of gamma radiation from 100 to 500 krad were used to investigate the effects of the mechanical properties of the composites and the jute fabrics. Though gamma radiation improved the mechanical properties, such as the tensile strength (TS) and Young’s modulus (Y), and decreased the elongation at break % (Eb%) of the composites, it deteriorated all these properties for jute fabrics. The highest values of TS and Y and the lowest value of Eb% were found to be 39.44 Mpa, 1218.33 Mpa, and 7.68% for the Jute/PR; and 48.83 Mpa, 1459.67 Mpa, and 3.68% for the Jute/Epoxy composites, respectively, at a 300 krad gamma radiation dose. A further increase in dose altered all these properties; thus, 300 krad was found to be the optimum dose for both of the composites. Between the two composites, gamma radiation influenced the Jute/PR composite more than the Jute/Epoxy composite.

4 citations



Journal ArticleDOI
Abstract: In the present study, long staple lignocellulosic fibres were extracted from the arecanut leaf sheath, an agricultural biomass. The arecanut leaf sheath (ANLS) fibres have been extracted by alkali ...

Cites background from "Lengthwise jute fibre properties va..."

  • ...The rigidity of cellulosic fibres increases with decreasing microfibriller angle (Das, 2017a, 2017b; Das et al., 2019)....

    [...]


Journal ArticleDOI
Abstract: Arecanut leaf sheath (ANLS) an unexplored agricultural biomass is used to recover long staple lignocellulosic fibers. A long staple lignocellulosic fiber is extracted from ANLS biomass using 8% NaO...

References
More filters

Journal ArticleDOI
Abstract: This review article concerning natural and man-made cellulose fibre reinforced plastics, introduces possible applications of this material group. The physical properties of natural fibres are mainly determined by the chemical and physical composition, such as the structure of fibres, cellulose content, angle of fibrils, cross-section, and by the degree of polymerization. Only a few characteristic values, but especially the specific mechanical properties, can reach comparable values of traditional reinforcing fibres. This physical structure can be modified by using alkali treatment and acetylation processes. The application of natural fibres as reinforcements in composite materials requires, just as for glass-fibre reinforced composites, a strong adhesion between the fibre and the matrix, regardless of whether a traditional polymer (thermoplastics or thermosets) matrix, a biodegradable polymer matrix or cement is used. Further this article gives a survey about physical and chemical treatment methods which improve the fibre matrix adhesion, their results and effects on the physical properties of composites. These different treatments change among others the hydrophilic character of the natural fibres, so that moisture effects in the composite are reduced. To bring about hydrophobic properties to natural fibres, a special treatment, termed acetylation, can be used. The effectiveness of this method is strongly influenced by the treatment conditions used. The mechanical and other physical properties of the composite are generally dependent on the fibre content, which also determines the possible amount of coupling agents in the composite. The influence of such treatments by taking into account fibre content on the creep, quasi-static, cyclic dynamic and impact behaviour of natural fibre reinforced plastics are discussed in detail. For special performance requirements, hybrid composites made of natural and conventional fibres can be prepared with desired properties. The processing conditions play, next to the mechanical properties of natural fibres, an important role for the industrial use of these materials. The results presented in this paper show, that natural fibres can be processed with the already commonly applied methods: glass mat thermoplastic matrix (GMT), sheet moulding compound (SMC) or bulk moulding compound (BMC). For the processing of thermoplastics reinforced with natural fibres, new methods (e.g. the “EXPRESS” processing) are of increasing importance. Natural fibres seem to have little resistance towards environmental influences. This can be recognized in the composite and can be advantageously utilized for the development of biological degradable composites with good physical properties.

3,889 citations


"Lengthwise jute fibre properties va..." refers background in this paper

  • ...Tensile strength and modulus of fibres are important parameters for their selection in use (Bledzki, 1999; Mwaikambo, 2009)....

    [...]


Journal ArticleDOI
Abstract: Natural fibers are emerging as low cost, lightweight and apparently environmentally superior alternatives to glass fibers in composites. We review select comparative life cycle assessment studies of natural fiber and glass fiber composites, and identify key drivers of their relative environmental performance. Natural fiber composites are likely to be environmentally superior to glass fiber composites in most cases for the following reasons: (1) natural fiber production has lower environmental impacts compared to glass fiber production; (2) natural fiber composites have higher fiber content for equivalent performance, reducing more polluting base polymer content; (3) the light-weight natural fiber composites improve fuel efficiency and reduce emissions in the use phase of the component, especially in auto applications; and (4) end of life incineration of natural fibers results in recovered energy and carbon credits.

1,599 citations


Journal ArticleDOI
Alfred D. French1Institutions (1)
01 Apr 2014-Cellulose
Abstract: Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been proposed with synchrotron X-radiation and neutron diffraction over the past decade or so. In part, this desirable connection is thwarted by the use of different conventions for description of the unit cells of the crystal structures. In the present work, powder diffraction patterns from cellulose Iα, Iβ, II, IIII, and IIIII were calculated based on the published atomic coordinates and unit cell dimensions contained in modified “crystal information files” (.cif) that are supplied in the Supplementary Information. The calculations used peak widths at half maximum height of both 0.1 and 1.5° 2θ, providing both highly resolved indications of the contributions of each contributing reflection to the observable diffraction peaks as well as intensity profiles that more closely resemble those from practical cellulose samples. Miller indices are shown for each contributing peak that conform to the convention with c as the fiber axis, a right-handed relationship among the axes and the length of a < b. Adoption of this convention, already used for crystal structure determinations, is also urged for routine studies of polymorph and crystallinity. The calculated patterns are shown with and without preferred orientation along the fiber axis. Diffraction intensities, output by the Mercury program from the Cambridge Crystallographic Data Centre, have several uses including comparisons with experimental data. Calculated intensities from different polymorphs can be added in varying proportions using a spreadsheet program to simulate patterns such as those from partially mercerized cellulose or various composites.

1,234 citations


"Lengthwise jute fibre properties va..." refers background in this paper

  • ...It is reported in the literature that for Ib cellulose samples, unit cell dimensions are a¼ 7.784Å, b¼ 8.201Å, c¼ 10.380Å, and c¼ 96.55 , the diffraction patterns for Ib samples with preferred orientation along the caxis (French, 2014)....

    [...]

  • ...55 , the diffraction patterns for Ib samples with preferred orientation along the caxis (French, 2014)....

    [...]


Journal ArticleDOI
01 Apr 2010-Nature Materials
TL;DR: It is illustrated that through nanoconfinement, a combination of uniform shear deformation that makes most efficient use of hydrogen bonds and the emergence of dissipative molecular stick-slip deformation leads to significantly enhanced mechanical properties.
Abstract: Silk features exceptional mechanical properties such as high tensile strength and great extensibility, making it one of the toughest materials known. The exceptional strength of silkworm and spider silks, exceeding that of steel, arises from beta-sheet nanocrystals that universally consist of highly conserved poly-(Gly-Ala) and poly-Ala domains. This is counterintuitive because the key molecular interactions in beta-sheet nanocrystals are hydrogen bonds, one of the weakest chemical bonds known. Here we report a series of large-scale molecular dynamics simulations, revealing that beta-sheet nanocrystals confined to a few nanometres achieve higher stiffness, strength and mechanical toughness than larger nanocrystals. We illustrate that through nanoconfinement, a combination of uniform shear deformation that makes most efficient use of hydrogen bonds and the emergence of dissipative molecular stick-slip deformation leads to significantly enhanced mechanical properties. Our findings explain how size effects can be exploited to create bioinspired materials with superior mechanical properties in spite of relying on mechanically inferior, weak hydrogen bonds.

925 citations


Journal ArticleDOI
Abstract: The effective utilization of raw natural fibers as indispensable component in polymers for developing novel low-cost eco-friendly composites with properties such as acceptable specific strength, low density, high toughness, good thermal properties, and biodegradability is one of the most rapidly emerging fields of research in polymer engineering and science. In fact, raw natural fiber–reinforced composites are the subject of numerous scientific and research projects, as well as many commercial programs. Keeping in mind the immense advantages of raw natural fibers, in the present article we concisely review raw natural fiber/polymer matrix composites with particular focus on their mechanical properties.

527 citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20214
20202
20191