scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Posted Content
TL;DR: The Mixed Tempered Stable (MTS) distribution as discussed by the authors is a parametric distribution with the same structure of the Normal Variance Mean Mixtures (NVM) but the normality assumption leaves place to a semi-heavy tailed distribution.
Abstract: In this paper we introduce a new parametric distribution, the Mixed Tempered Stable. It has the same structure of the Normal Variance Mean Mixtures but the normality assumption leaves place to a semi-heavy tailed distribution. We show that, by choosing appropriately the parameters of the distribution and under the concrete specification of the mixing random variable, it is possible to obtain some well-known distributions as special cases. We employ the Mixed Tempered Stable distribution which has many attractive features for modeling univariate returns. Our results suggest that it is enough flexible to accomodate different density shapes. Furthermore, the analysis applied to statistical time series shows that our approach provides a better fit than competing distributions that are common in the practice of finance.

13 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...= exp [ΦV (LstdCTS (u; α, λ+, λ−))] (15) The characteristic function identifies the distribution at time one of a time changed Lévy process that as shown in [26] and [5] it is infinitely divisible....

    [...]

Journal ArticleDOI
TL;DR: In this article, the density of some power of a positive stable distribution is a completely monotone function and the distribution function of the latter variable is written down and gives a more explicit description of the non commutative analogue of positive stable distributions in the setting of Voiculescu's free probability theory.
Abstract: According to a representation due to M. Kanter, the density of some power of a positive stable distribution is a completely monotone function. In this paper, we first derive its representative Bernstein measure which also describes the law of some function of a uniform random variable, referred to below as the Kanter random variable. Then, the distribution function of the latter variable is written down and gives a more explicit description of the non commutative analogue of positive stable distributions in the setting of Voiculescu's free probability theory. Analytic evidences of the occurrence of the Kanter random variable in both the classical and the free settings conclude the exposition.

13 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...Amazing and non trivial as well is the complete monotonicity of the density of (Xα) , r ≥ α/(1− α) (in particular its infinite divisibility, [15])....

    [...]

Posted Content
TL;DR: In this paper, the authors examined the asymptotic behavior of the sample autocovariance in a continuous-time moving average model with long-range dependence and showed that it is either Rosenblatt distributed or stable distributed.
Abstract: We examine the asymptotic behaviour of the sample autocovariance in a continuous-time moving average model with long-range dependence. We show that it is either asymptotically Rosenblatt distributed or stable distributed. This shows that results by Horv\'ath and Kokoszka for discrete-time moving average processes with long memory also hold for continuous-time moving average processes.

13 citations


Additional excerpts

  • ...12 in [20], hence E[(LN )(2)] = ∫ aN −aN x(2)ν(dx) +E[LN 1 ] 2 = ∫ aN −aN x(2)ν(dx), while E[(L11{|L1|≤aN}) (2)] = ∫ aN −aN x(2)μ(dx) where μ denotes the distribution of L1 and ν denotes its Lévy measure....

    [...]

Journal ArticleDOI
TL;DR: A characteristic function-based method is proposed to estimate the time-changed Levy models, which take into account both stochastic volatility and infinite-activity jumps, and results and option pricing performance indicate that the infinite- activity model performs better than the finite-activity one.

13 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...To guarantee the absolute continuity between Xt and X P t , coefficients α and c should remain unchanged and only tail parameters could be different (Sato, 1999; Cont and Tankov, 2004)....

    [...]

ReportDOI
TL;DR: In this article, the authors explain how the common practice of size-discovery trade detracts from overall financial market efficiency, and show that as the frequency of size discovery sessions is increased, the exchange market depth is further lowered by the traders' reduced incentive to bid aggressively on the exchange, further delaying the rebalancing of positions, and more than offsetting the gains from trade that occur at each of the size discover sessions.
Abstract: We explain how the common practice of size-discovery trade detracts from overall financial market efficiency. At each of a series of size-discovery sessions, traders report their desired trades, generating allocations of the asset and cash that rely on the most recent exchange price. Traders can thus mitigate exchange price impacts by waiting for size-discovery sessions. This waiting causes socially costly delays in the rebalancing of asset positions across traders. As the frequency of size-discovery sessions is increased, exchange market depth is further lowered by the traders’ reduced incentive to bid aggressively on the exchange, further delaying the rebalancing of positions, and more than offsetting the gains from trade that occur at each of the size-discovery sessions.

13 citations


Additional excerpts

  • ...The social costs of the strategic avoidance of exchange price impact are well covered by the results of Vayanos (1999), Rostek and Weretka (2015), Du and Zhu (2017), and Duffie and Zhu (2017)....

    [...]

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations