scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Journal ArticleDOI
01 Sep 2013
TL;DR: In this article, a Clark-Ocone type formula under change of measure (COCM) for Lévy processes with L-Lévy measure is presented, based on the Malliavin calculus.
Abstract: Abstract. The Clark-Ocone formula is an explicit stochastic integral representation for random variables in terms of Malliavin derivatives. In this paper, we prove a Clark-Ocone type formula under change of measure (COCM) for Lévy processes with L-Lévy measure. To show the COCM for L-Lévy processes, we develop Malliavin calculus for Lévy processes, based on [11]. By using σ-finiteness of Lévy measure, we obtain a commutation formula for the Lebesgue integration and the Malliavin derivative and a chain rule for Malliavin derivative. These formulas derive the COCM. Finally, we obtain a log-Sobolev type formula for Lévy functionals.

12 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...Sato, K.: Lévy processes and infinitely divisible distributions, Cambridge University Press, Cambridge, 1999....

    [...]

  • ...For details, see the book by Sato [22]....

    [...]

Posted Content
TL;DR: In this article, the authors characterize the distribution of the first exit time from an arbitrary open set for a class of semi-Markov processes obtained as time-changed Markov processes.
Abstract: In this paper we characterize the distribution of the first exit time from an arbitrary open set for a class of semi-Markov processes obtained as time-changed Markov processes. We estimate the asymptotic behaviour of the survival function (for large $t$) and of the distribution function (for small $t$) and we provide some conditions for absolute continuity. We have been inspired by a problem of neurophyshiology and our results are particularly usefull in this field, precisely for the so-called Leacky Integrate-and-Fire (LIF) models: the use of semi-Markov processes in these models appear to be realistic under several aspects, e.g., it makes the intertimes between spikes a r.v. with infinite expectation, which is a desiderable property. Hence, after the theoretical part, we provide a LIF model based on semi-Markov processes.

12 citations

Posted Content
TL;DR: In this paper, the authors compare two definitions of multistable L\'evy motions: pure-jump Markov processes and semimartingale Markov Processes.
Abstract: We compare two definitions of multistable L\'evy motions. Such processes are extensions of classical L\'evy motion where the stability index is allowed to vary in time. We show that the two multistable L\'evy motions have distinct properties: in particular, one is a pure-jump Markov process, while the other one satisfies neither of these properties. We prove that both are semimartingales and provide semimartingale decompositions.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the convergence of a continuous-time Markov chain approximation to the generator of the Levy process was studied in the presence of transition densities of the diffusion matrix.
Abstract: We consider the convergence of a continuous-time Markov chain approximation $X^h$, $h>0$, to an $\mathbb{R}^d$-valued Levy process $X$. The state space of $X^h$ is an equidistant lattice and its $Q$-matrix is chosen to approximate the generator of $X$. In dimension one ($d=1$), and then under a general sufficient condition for the existence of transition densities of $X$, we establish sharp convergence rates of the normalised probability mass function of $X^h$ to the probability density function of $X$. In higher dimensions ($d>1$), rates of convergence are obtained under a technical condition, which is satisfied when the diffusion matrix is non-degenerate.

12 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...We refer to [3, 30] for the general background on Lévy processes....

    [...]

Posted Content
TL;DR: In this paper, a strong Feller process with a transition density is defined as a sum of an explicitly given principal term and a residual term, which is the transition density of an α-stable random variable whose parameters depend on the current state of the process.
Abstract: A stable-like process is a Feller process $(X_t)_{t\geq 0}$ taking values in $\mathbb{R}^d$ and whose generator behaves, locally, like an $\alpha$-stable Levy process, but the index $\alpha$ and all other characteristics may depend on the state space. More precisely, the jump measure need not to be symmetric and it strongly depends on the current state of the process; moreover, we do not require the gradient term to be dominated by the pure jump part. Our approach is to understand the above phenomena as suitable microstructural perturbations. We show that the corresponding martingale problem is well-posed, and its solution is a strong Feller process which admits a transition density. For the transition density we obtain a representation as a sum of an explicitly given principal term -- this is essentially the density of an $\alpha$-stable random variable whose parameters depend on the current state $x$ -- and a residual term; the $L^\infty\otimes L^1$-norm of the residual term is negligible and so is, under an additional structural assumption, the $L^\infty\otimes L^\infty$-norm. Concrete examples illustrate the relation between the assumptions and possible transition density estimates.

12 citations

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations