scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Journal ArticleDOI
TL;DR: A new formalism for the deterministic analysis associated with backward stochastic differential equations driven by general cadlag martingales is introduced, and explicit expressions are provided when $(X,S)$ is an exponential of additive processes.
Abstract: The aim of this paper is to introduce a new formalism for the deterministic analysis associated with backward stochastic differential equations driven by general cadlag martingales. When the martingale is a standard Brownian motion, the natural deterministic analysis is provided by the solution of a semilinear PDE of parabolic type. A significant application concerns the hedging problem under basis risk of a contingent claim $g(X_T,S_T)$, where $S$ (resp. $X$) is an underlying price of a traded (resp. non-traded but observable) asset, via the celebrated Follmer-Schweizer decomposition. We revisit the case when the couple of price processes $(X,S)$ is a diffusion and we provide explicit expressions when $(X,S)$ is an exponential of additive processes.

9 citations


Cites background or methods from "Lévy processes and infinitely divis..."

  • ...(B.1) Moreover, [Sato, 2013, Theorem 31.5] shows that C20 ⊂ D(L0), where C 2 0 is the set of functions f ∈ C 2 such that f , f ′ and f ′′ vanish at infinity....

    [...]

  • ...The classical theory of semigroup for Lévy processes 39 defines the semigroup P on the set C0 of continuous functions vanishing at infinity, equipped with the sup-norm ‖u‖∞ = supx |u(x)|, cf. for example [Sato, 2013, Theorem 31.5]....

    [...]

  • ...By [Sato, 2013, Theorem 31.5], the semigroup P is strongly continuous on C0, with norm ‖P‖ = 1, and its generator L0 is given by L0f(s) = ∫ ( f(s+ y)− f(s)− yf ′(s)1|y| 1 ) ν(dy)....

    [...]

  • ...31 of Sato [2013]. There one defines the semigroup P on the set C0 of continuous functions vanishing at infinity, equipped with the sup-norm ‖u‖∞ = sups |u(s)|....

    [...]

  • ...The idea of the proof is an adaptation of the proof in [Sato, 2013, Theorem 31.5]....

    [...]

Journal Article
TL;DR: In this paper, the authors derived an integro-differential equation for the density of the exponential functional whenever it exists and derived conditions for self-decomposable distributions and generalized Gamma convolutions to be in the range.
Abstract: We study the exponential functional ∫∞ 0 e−ξs− dηs of two one-dimensional independent Lévy processes ξ and η, where η is a subordinator. In particular, we derive an integro-differential equation for the density of the exponential functional whenever it exists. Further, we consider the mapping Φξ for a fixed Lévy process ξ, which maps the law of η1 to the law of the corresponding exponential functional ∫∞ 0 e−ξs− dηs, and study the behaviour of the range of Φξ for varying characteristics of ξ. Moreover, we derive conditions for selfdecomposable distributions and generalized Gamma convolutions to be in the range. On the way we also obtain new characterizations of these classes of distributions.

9 citations

Posted Content
TL;DR: In this article, the ergodic properties of generalized Ornstein-Uhlenbeck processes are investigated and sufficient conditions for ergodicity and subexponential and exponential convergence to the invariant probability measure are provided.
Abstract: We investigate ergodic properties of generalized Ornstein--Uhlenbeck processes. In particular, we provide sufficient conditions for ergodicity, and for subexponential and exponential convergence to the invariant probability measure. We use the Foster--Lyapunov method. The drift conditions are obtained using the explicit form of the generator of the continuous process. In some special cases the optimality of our results can be shown.

9 citations

Journal ArticleDOI
TL;DR: The main result of as discussed by the authors is the solution to the optimal stopping problem of maximizing the variance of a geometric Levy process, which is called the variance problem and can be solved without randomized stopping.
Abstract: The main result of this paper is the solution to the optimal stopping problem of maximizing the variance of a geometric Levy process. We call this problem the variance problem. We show that, for some geometric Levy processes, we achieve higher variances by allowing randomized stopping. Furthermore, for some geometric Levy processes, the problem has a solution only if randomized stopping is allowed. When randomized stopping is allowed, we give a solution to the variance problem. We identify the Levy processes for which the allowance of randomized stopping times increases the maximum variance. When it does, we also solve the variance problem without randomized stopping.

9 citations

Journal ArticleDOI
Asma Khedher1
TL;DR: In this paper, the robustness of options prices to model variation in a multidimensional jump-diffusion framework was studied for both European and Exotic options and their deltas using two approaches: the Malliavin method and the Fourier method.
Abstract: We study the robustness of options prices to model variation in a multidimensional jump-diffusion framework. In particular, we consider price dynamics in which small variations are modeled either by a Poisson random measure with infinite activity or by a Brownian motion. We consider both European and Exotic options and we study their deltas using two approaches: the Malliavin method and the Fourier method. We prove robustness of the deltas to model variation. We apply these results to the study of stochastic volatility models for the underlying and the corresponding options.

9 citations


Additional excerpts

  • ...We also recall the Lévy–Itô decomposition of a Lévy process (see [31]): Theorem 2....

    [...]

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations