scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Posted Content
TL;DR: In this paper, a decomposition of sample paths of Levy processes with values in complete locally convex Suslin spaces is presented, and sufficient conditions for the existence of a pathwise compensated Poisson integral handling infinite activity of the Levy process are given.
Abstract: We provide a Levy-Ito decomposition of sample paths of Levy processes with values in complete locally convex Suslin spaces. This class of state spaces contains the well investigated examples of separable Banach spaces, as well as Frechet or distribution spaces among many others. Sufficient conditions for the existence of a pathwise compensated Poisson integral handling infinite activity of the Levy process are given.

8 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...Lévy processes with values in R [32, 3] and in Banach spaces [1, 2, 31, 42, 13] have been well-established but beyond the Banach space case little is known....

    [...]

Posted Content
TL;DR: The class of Riemann zeta distribution is one of the classical classes of probability distributions on R. In as mentioned in this paper, a multidimensional Shintani zeta function is introduced and its definable probability distribution on R^d is studied.
Abstract: The class of Riemann zeta distribution is one of the classical classes of probability distributions on R. Multidimensional Shintani zeta function is introduced and its definable probability distributions on R^d are studied. This class contains some fundamental probability distributions such as binomial and Poisson distributions. The relation with multidimensional polynomial Euler product, which induces multidimensional infinitely divisible distributions on R^d, is also studied.

8 citations

Journal ArticleDOI
20 Jul 2017-Chaos
TL;DR: This article presents a new and easily implementable method to quantify the so-called coupling distance between the law of a time series and theLaw of a differential equation driven by Markovian additive jump noise with heavy-tailed jumps, such as α-stable Lévy flights.
Abstract: This article presents a new and easily implementable method to quantify the so-called coupling distance between the law of a time series and the law of a differential equation driven by Markovian additive jump noise with heavy-tailed jumps, such as α-stable Levy flights. Coupling distances measure the proximity of the empirical law of the tails of the jump increments and a given power law distribution. In particular, they yield an upper bound for the distance of the respective laws on path space. We prove rates of convergence comparable to the rates of the central limit theorem which are confirmed by numerical simulations. Our method applied to a paleoclimate time series of glacial climate variability confirms its heavy tail behavior. In addition, this approach gives evidence for heavy tails in datasets of precipitable water vapor of the Western Tropical Pacific.

8 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...For further details on the distribution and density on this relation we refer to [35]....

    [...]

  • ...For more on this property we refer to Sato [35]....

    [...]

Posted Content
TL;DR: In this article, the authors introduced the class of L\'evy processes with respect to the index Whittaker convolution and studied their basic properties, and showed that the square root of the Shiryaev process belongs to the family of L'evy process.
Abstract: The index Whittaker convolution operator, recently introduced by the authors, gives rise to a convolution measure algebra having the property that the convolution of probability measures is a probability measure. In this paper, we introduce the class of L\'evy processes with respect to the index Whittaker convolution and study their basic properties. We prove that the square root of the Shiryaev process belongs to our family of L\'evy process, and this is shown to yield a martingale characterization of the Shiryaev process analogous to L\'evy's characterization of Brownian motion. Our results demonstrate that a nice theory of L\'evy processes with respect to generalized convolutions can be developed even if the usual compactness assumption on the support of the convolution fails, shedding light into the connection between the properties of the convolution algebra and the nature of the singularities of the associated differential operator.

8 citations

Journal ArticleDOI
TL;DR: In this article, the robustness of the price to model risk is investigated in two types of bivariate jump-diffusion models: one allowing for infinite activity small jumps and one not.
Abstract: We study the pricing of spread options and we obtain a Margrabe-type formula for a bivariate jump-diffusion model. Moreover, we study the robustness of the price to model risk, in the sense that we consider two types of bivariate jump-diffusion models: one allowing for infinite activity small jumps and one not. In the second model, an adequate continuous component describes the small variation of prices. We illustrate our computations by several examples.

8 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...2 in Sato [23], the new characteristic triplet of the Lévy process L under the new martingale measure Pθ is given by (ã, 0, ν̃), where ν̃(dz1, dz2) = e ν(dz1, dz2), and ãi = ai + ∫...

    [...]

  • ...Stochastic Models, 13, 887–910. doi:10.1080/15326349708807456 Sato, K.-I. (1999)....

    [...]

  • ...Using Proposition 8.9 in Sato (1999), we know that the Lévy density of L(1) is given by g zð Þ ¼ δffiffiffi 2 p α π ffiffiffiffiffiffiffiffiffiffiffiffiffiffi z0 1z p 3 2 exp βzð ÞK3 2 α ffiffiffiffiffiffiffiffiffiffiffiffiffi z0 1z p : Using the fact that for z !...

    [...]

  • ...The P -a.s. convergence follows directly from the proof of the Lévy– Kintchine formula (see Theorem 19.2 in Sato, 1999)....

    [...]

  • ...1) has the following Lévy-Khintchine representation (see Sato [23]) E[e] = e, where ψ(z) = i < a, z > −(1) 2 < z, σz > + ∫...

    [...]

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations