scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the existence of weak martingale solutions to a class of second order parabolic stochastic partial differential equations is established, which are driven by multiplicative jump type noise, with a non-Lipschitz multiplicative functional.
Abstract: We establish the existence of weak martingale solutions to a class of second order parabolic stochastic partial differential equations. The equations are driven by multiplicative jump type noise, with a non-Lipschitz multiplicative functional. The drift in the equations contains a dissipative nonlinearity of polynomial growth.

54 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...2 from [70] is true in Banach spaces, see for instance Prop 1....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a nonparametric estimator of the integrated volatility of an It\€ o} semimartingale observed at discrete times on a fixed time interval with mesh of the observation grid shrinking to zero is proposed.
Abstract: We propose new nonparametric estimators of the integrated volatility of an It\^{o} semimartingale observed at discrete times on a fixed time interval with mesh of the observation grid shrinking to zero. The proposed estimators achieve the optimal rate and variance of estimating integrated volatility even in the presence of infinite variation jumps when the latter are stochastic integrals with respect to locally "stable" L\'{e}vy processes, that is, processes whose L\'{e}vy measure around zero behaves like that of a stable process. On a first step, we estimate locally volatility from the empirical characteristic function of the increments of the process over blocks of shrinking length and then we sum these estimates to form initial estimators of the integrated volatility. The estimators contain bias when jumps of infinite variation are present, and on a second step we estimate and remove this bias by using integrated volatility estimators formed from the empirical characteristic function of the high-frequency increments for different values of its argument. The second step debiased estimators achieve efficiency and we derive a feasible central limit theorem for them.

54 citations

Journal ArticleDOI
TL;DR: In this article, the authors examine the performance of several popular Levy jump models and some of the most sophisticated affine jump-diffusion models in capturing the joint dynamics of stock and option prices.
Abstract: We examine the performances of several popular Levy jump models and some of the most sophisticated affine jump-diffusion models in capturing the joint dynamics of stock and option prices. We develop efficient Markov chain Monte Carlo methods for estimating parameters and latent volatility/jump variables of the Levy jump models using stock and option prices. We show that models with infinite-activity Levy jumps in returns significantly outperform affine jump-diffusion models with compound Poisson jumps in returns and volatility in capturing both the physical and risk-neutral dynamics of the S&P 500 index. We also find that the variance gamma model of Madan, Carr, and Chang with stochastic volatility has the best performance among all the models we consider.

52 citations


Cites background or methods or result from "Lévy processes and infinitely divis..."

  • ...7 Other studies that estimate Lévy processes using underlying or option prices include Barndorff-Nielsen and Shephard (2004), Belomestny and Reiss (2006), Cont and Tankov (2004a), Griffin and Steel (2006), among others....

    [...]

  • ...Although the change of measure for Brownian motion only involves changing the drift term, the change of measure for Lévy processes is much more complicated. The important result of Sato (1999) (given in the Appendix) provides the theoretical foundation for the change of measure of Lévy processes considered in this paper....

    [...]

  • ...7 Other studies that estimate Lévy processes using underlying or option prices include Barndorff-Nielsen and Shephard (2004), Belomestny and Reiss (2006), Cont and Tankov (2004a), Griffin and Steel (2006), among others. Aı̈t-Sahalia (2004) and Aı̈t-Sahalia and Jacod (2008) provide theoretical analyses on statistical inferences of Lévy processes....

    [...]

  • ...Sato (1999) shows that P and Q are equivalent for all t if and only if the following conditions are satisfied: (i) σ̄P = σ̄Q; (ii) The Lévy measures are equivalent with∫∞ −∞(e φ(x)/2 − 1)2πP(dx) < ∞; and (iii) If σ̄P = 0, then we must in addition have μ̄Q − μ̄P = ∫ 1 −1 x(πQ(x) − πP(x)) dx....

    [...]

  • ...The important result of Sato (1999) (given in the Appendix) provides the theoretical foundation for the change of measure of Lévy processes considered in this paper....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a new model for financial processes in form of a space-time fractional diffusion equation of varying order is introduced, analyzed, and applied for some financial data.
Abstract: Abstract In this paper, a new model for financial processes in form of a space-time fractional diffusion equation of varying order is introduced, analyzed, and applied for some financial data. While the orders of the spatial and temporal derivatives of this equation can vary on different time intervals, their ratio remains constant and thus the global scaling properties of its solutions are conserved. In this way, the model covers both a possible complex short-term behavior of the financial processes and their long-term dynamics determined by its characteristic time-independent scaling exponent. As an application, we consider the option pricing and describe how it can be modeled by the space-time fractional diffusion equation of varying order. In particular, the real option prices of index S&P 500 traded in November 2008 are analyzed in the framework of our model and the results are compared with the predictions made by other option pricing models.

52 citations

Journal ArticleDOI
TL;DR: A continuously monitored system is considered, that gradually and stochastically deteriorates according to a bivariate non-decreasing Levy process, and which involves a delayed replacement, triggered by the reaching of some preventive zone for the system deterioration level.

51 citations

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations