scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Journal ArticleDOI
TL;DR: The first passage identities for one-dimensional stable processes with two-sided jumps were given in this paper, where the authors make use of path censoring and a non-trivial Wiener-Hopf factorisation of an auxiliary Levy process.
Abstract: After Brownian motion, �-stable processes are often considered an exemplary family of processes for which many aspects of the general theory of Lproesses can be illus- trated in closed form. First passage problems, which are relatively straightforward to handle in the case of Brownian motion, become much harder in the setting of a general Levy process on account of the inclusion of jumps. A collection of articles through the 1960s and early 1970s, appealing largely to potential analytic methods for general Markov processes, were relatively successful in handling a number of first passage prob- lems, in particular for symmetric �-stable processes in one or more dimensions. See for example (3, 24, 12, 13, 27) to name but a few. However, following this cluster of activity, several decades have passed since new results concerning first passage identities for �-stable processes have appeared. The last few years have seen a number of new, explicit first passage identities for one- dimensional �-stable processes thanks to a better understanding of the intimate re- lationship between the aforesaid processes and positive self-similar Markov processes. See for example (4, 6, 8, 17, 22). In this paper we return to the problem of Blumenthal et al. (3), published in 1961, which gave the law of the position of first entry of a symmetric �-stable process into the unit ball. Specifically, we are interested in establishing the same law, but now for a one dimensional �-stable process which enjoys two-sided jumps, and which is not necessarily symmetric. Our method is modern in the sense that we appeal to the relationship between �-stable processes and certain positive self-similar Markov processes. However there are two notable additional innovations. First, we make use of a type of path censoring. Second, we are able to describe in explicit analytical detail a non-trivial Wiener-Hopf factorisation of an auxiliary Levy process from which the desired solution can be sourced. Moreover, as a consequence of this approach, we are able to deliver a number of additional, related identities in explicit form for �-stable processes.

47 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...For more details, see Sato [31], Section 14....

    [...]

  • ...For more details, see Sato [30, §14]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a novel idea for a coupling of solutions of stochastic differential equations driven by Levy noise is presented, inspired by some results from the optimal transportation theory, and this coupling is used to obtain exponential contractivity of the semigroups associated with these solutions with respect to an appropriately chosen Kantorovich distance.

47 citations


Additional excerpts

  • ...[1] or [20]), ψ(z) = i〈l, z〉 − 1 2 〈z, Az〉 + ∫...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors consider the asymptotics of drawdown quantities when the threshold of the drawdown magnitude approaches zero and derive the law of duration of drawdowns for a large class of Levy processes (with a general spectrally negative part plus a positive compound Poisson structure).
Abstract: This paper considers magnitude, asymptotics and duration of drawdowns for some Levy processes. First, we revisit some existing results on the magnitude of drawdowns for spectrally negative Levy processes using an approximation approach. For any spectrally negative Levy process whose scale functions are well-behaved at $0+$, we then study the asymptotics of drawdown quantities when the threshold of drawdown magnitude approaches zero. We also show that such asymptotics is robust to perturbations of additional positive compound Poisson jumps. Finally, thanks to the asymptotic results and some recent works on the running maximum of Levy processes, we derive the law of duration of drawdowns for a large class of Levy processes (with a general spectrally negative part plus a positive compound Poisson structure). The duration of drawdowns is also known as the "Time to Recover" (TTR) the historical maximum, which is a widely used performance measure in the fund management industry. We find that the law of duration of drawdowns qualitatively depends on the path type of the spectrally negative component of the underlying Levy process.

47 citations

Posted Content
TL;DR: In this article, the authors introduce a new renormalization of the strike variable with the property that the implied volatility converges to a non-constant limiting shape, which is a function of both the diffusion component of the process and the jump activity index of the jump component.
Abstract: We analyse the behaviour of the implied volatility smile for options close to expiry in the exponential L\'evy class of asset price models with jumps. We introduce a new renormalisation of the strike variable with the property that the implied volatility converges to a non-constant limiting shape, which is a function of both the diffusion component of the process and the jump activity (Blumenthal-Getoor) index of the jump component. Our limiting implied volatility formula relates the jump activity of the underlying asset price process to the short end of the implied volatility surface and sheds new light on the difference between finite and infinite variation jumps from the viewpoint of option prices: in the latter, the wings of the limiting smile are determined by the jump activity indices of the positive and negative jumps, whereas in the former, the wings have a constant model-independent slope. This result gives a theoretical justification for the preference of the infinite variation L\'evy models over the finite variation ones in the calibration based on short-maturity option prices.

46 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...20 in [23], we have that Xt t → b almost surely as t → 0....

    [...]

  • ...From theorem 43.20 in Sato (1999), we have that Xtt → b almost surely as t → 0....

    [...]

Journal ArticleDOI
TL;DR: In this article, a partial integro-differential equation that describes the dynamics of the arbitrage-free price of the variance swap is formulated, under appropriate assumptions for the first four cumulants of the driving subordinator, a Veceř-type theorem is proved.
Abstract: In this paper a couple of variance dependent instruments in the financial market are studied. Firstly, a number of aspects of the variance swap in connection to the Barndorff-Nielsen and Shephard model are studied. A partial integro-differential equation that describes the dynamics of the arbitrage-free price of the variance swap is formulated. Under appropriate assumptions for the first four cumulants of the driving subordinator, a Veceř-type theorem is proved. The bounds of the arbitrage-free variance swap price are also found. Finally, a price-weighted index modulated by market variance is introduced. The large-basket limit dynamics of the price index and the “error term” are derived. Empirical data driven numerical examples are provided in support of the proposed price index.

46 citations

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations