scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that if X is an α-stable random vector in Rd, then for all x> 0, the condition that X is a stable random vector is not violated.
Abstract: where m(f(X)) is a median of f(X) and where Φ is the (one-dimensional) standard normal distribution function. The inequality (1) has seen many extensions and to date, most of the conditions under which these developments hold require the existence of finite exponential moments for the underlying vector X . It is thus natural to explore the robustness of this “concentration phenomenon” and to study the corresponding results for stable vectors. It is the purpose of these notes to initiate this study and to present a few concentration results for stable and related vectors, freeing us from the exponential moment requirement. Our main result will imply that if X is an α-stable random vector in Rd, then for all x> 0,

28 citations

Journal ArticleDOI
TL;DR: In this paper, a general methodology for pricing early exercise and exotic financial options by extending the recently developed PROJ method is presented, along with a large set of reference prices for exotic, American and European options under Black-Scholes-Merton and Merton's jump-diffusion models.
Abstract: In general, no analytical formulas exist for pricing discretely monitored exotic options, even when a geometric Brownian motion governs the risk-neutral underlying. While specialized numerical algorithms exist for pricing particular contracts, few can be applied universally with consistent success and with general Le´vy dynamics. This paper develops a general methodology for pricing early exercise and exotic financial options by extending the recently developed PROJ method. We are able to efficiently obtain accurate values for complex products including Bermudan/ American options, Bermudan barrier options, survival probabilities and credit default swaps by value recursion; European barrier and lookback/hindsight options by density recursion; and arithmetic Asian options by characteristic function recursion. This paper presents a unified approach to tackling these and related problems. Algorithms are provided for each option type, along with a demonstration of convergence. We also provide a large set of reference prices for exotic, American and European options under Black–Scholes–Merton, normal inverse Gaussian, Kou’s double exponential jump diffusion, Carr–Madan–Geman–Yor (also known as KoBoL) and Merton’s jump-diffusion models.

28 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...Since the seminal work of [13], which introduced the fast Fourier transform (FFT) as a means of efficiently computing a spectrum of European option prices under exponential Lévy dynamics [5, 12, 59], the applicability and sophistication of transform methods has rapidly evolved (see [40] for more details and [43] for a related approach)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the variance-optimal hedging problem in stochastic volatility (SV) models based on time-changed Levy processes was solved in the setup of Carr et al. (2003).
Abstract: In this article, we solve the variance-optimal hedging problem in stochastic volatility (SV) models based on time-changed Levy processes, that is, in the setup of Carr et al. (2003). The solution is derived using results for general affine models in the companion article [Kallsen and Pauwels (2009)].

28 citations

Journal ArticleDOI
TL;DR: In this article, a cubic spline radial basis function (RBF) interpolation scheme was used to compute European and American option prices under the jump-diffusion model using the RBF interpolation algorithm.
Abstract: This paper will demonstrate how European and American option prices can be computed under the jump-diffusion model using the radial basis function (RBF) interpolation scheme. The RBF interpolation scheme is demonstrated by solving an option pricing formula, a one-dimensional partial integro-differential equation (PIDE). We select the cubic spline radial basis function and adopt a simple numerical algorithm (Briani et al. in Calcolo 44:33–57, 2007) to establish a finite computational range for the improper integral of the PIDE. This algorithm reduces the truncation error of approximating the improper integral. As a result, we are able to achieve a higher approximation accuracy of the integral with the application of any quadrature. Moreover, we a numerical technique termed cubic spline factorisation (Bos and Salkauskas in J Approx Theory 51:81–88, 1987) to solve the inversion of an ill-conditioned RBF interpolant, which is a well-known research problem in the RBF field. Finally, our numerical experiments show that in the European case, our RBF-interpolation solution is second-order accurate for spatial variables, while in the American case, it is second-order accurate for spatial variables and first-order accurate for time variables.

28 citations

Book ChapterDOI
TL;DR: In this paper, a new proof for the regularity of affine processes on general state spaces was provided by methods from the theory of Markovian semimartingales, and it was shown that the definition of an affine process, namely as stochastically continuous time-homogeneous Markov process with exponential affine Fourier-Laplace transform, already implies the existence of a cadlag version.
Abstract: We provide a new proof for regularity of affine processes on general state spaces by methods from the theory of Markovian semimartingales. On the way to this result we also show that the definition of an affine process, namely as stochastically continuous time-homogeneous Markov process with exponential affine Fourier–Laplace transform, already implies the existence of a cadlag version. This was one of the last open issues in the fundaments of affine processes.

28 citations

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations