scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, Liu et al. study a class of nonzero-sum reinsurance-investment stochastic differential games between two competitive insurers subject to systematic risks described by a general compound Poisson risk model, where each insurer can purchase the excess-of-loss reinsurance to mitigate both systematic and idiosyncratic jump risks of the inter-arrival claims.
Abstract: Recently, there have been numerous insightful applications of zero-sum stochastic differential games in insurance, as discussed in Liu et al. [Liu, J., Yiu, C. K.-F. & Siu, T. K. (2014). Optimal investment of an insurer with regime-switching and risk constraint. Scandinavian Actuarial Journal 2014(7), 583–601]. While there could be some practical situations under which nonzero-sum game approach is more appropriate, the development of such approach within actuarial contexts remains rare in the existing literature. In this article, we study a class of nonzero-sum reinsurance-investment stochastic differential games between two competitive insurers subject to systematic risks described by a general compound Poisson risk model. Each insurer can purchase the excess-of-loss reinsurance to mitigate both systematic and idiosyncratic jump risks of the inter-arrival claims; and can invest in one risk-free asset and one risky asset whose price dynamics follows the famous Heston stochastic volatility model [Heston, S...

22 citations


Cites background or methods from "Lévy processes and infinitely divis..."

  • ...In this respect, it is also well-known that a compound Poisson process can be used to approximate wide class of Lévy processes, e.g. αstable process, (see e.g. Corollary 8.8 of Sato (1999)) in addition to the diffusion process....

    [...]

  • ...From the standard theory of Lévy processes, (see e.g. Sato 1999), it is clear that for all πnk = (ank , bnk ) ∈ k, and for any initial condition (t, x) ∈ [0,T] × R, the stochastic differential equation {Xπ n k k (t)}t≥0 in (4) admits a unique strong solution....

    [...]

  • ...8 of Sato (1999)) in addition to the diffusion process....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors construct kernel estimators for linear functionals of and provide rates of convergence under regularity assumptions, and consider adaptive estimation via model selection and propose a new strategy for the data driven choice of the smoothing parameter.
Abstract: For a L evy process X having nite variation on compact sets and nite rst moments, ( dx) = x ( dx) is a nite signed measure which completely describes the jump dynamics. We construct kernel estimators for linear functionals of and provide rates of convergence under regularity assumptions. Moreover, we consider adaptive estimation via model selection and propose a new strategy for the data driven choice of the smoothing parameter.

22 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...(a proof can be found, for example, in [23])....

    [...]

Journal ArticleDOI
TL;DR: The existence of solutions to the Heath–Jarrow–Morton equation of the bond market with linear volatility and general Lévy random factor is studied.
Abstract: The existence of solutions to the Heath–Jarrow–Morton equation of the bond market with linear volatility and general Levy random factor is studied. Conditions for the existence and non-existence of solutions in the class of bounded fields are presented. For the existence of solutions, the Levy process should necessarily be without a Gaussian part and without negative jumps. If this is the case, then necessary and sufficient conditions for the existence are formulated either in terms of the behavior of the Levy measure of the noise near the origin or the behavior of the Laplace exponent of the noise at infinity.

22 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...Let us recall, see [4, 18, 21], that the law of the process L is determined by its Laplace transform E ( e−zL(t) ) = e , t ∈ 0, T ∗, z ∈ R, where J (z) = −az + 1 2 qz2 + ∫...

    [...]

  • ...7) are equivalent to, respectively, the integrability and square-integrability of the process L; see [21], Theorem 2....

    [...]

Journal ArticleDOI
TL;DR: In this article, a continuous-time dynamic spectral risk measure (DSR) is proposed, which is defined in terms of certain backward stochastic differential equations, and shown to arise in the limit of a sequence of such iterated spectral risk measures driven by lattice random walks, under suitable scaling and vanishing temporal and spatial mesh sizes.
Abstract: In this paper, we propose the notion of continuous-time dynamic spectral risk measure (DSR). Adopting a Poisson random measure setting, we define this class of dynamic coherent risk measures in terms of certain backward stochastic differential equations. By establishing a functional limit theorem, we show that DSRs may be considered to be (strongly) time-consistent continuous-time extensions of iterated spectral risk measures, which are obtained by iterating a given spectral risk measure (such as expected shortfall) along a given time-grid. Specifically, we demonstrate that any DSR arises in the limit of a sequence of such iterated spectral risk measures driven by lattice random walks, under suitable scaling and vanishing temporal and spatial mesh sizes. To illustrate its use in financial optimisation problems, we analyse a dynamic portfolio optimisation problem under a DSR.

22 citations

Journal ArticleDOI
TL;DR: It is proved that spatially dilated versions of self-similar sparse processes are asymptotically Gaussian as the dilation factor increases, and it is shown that the coarse-scale wavelet coefficients of these processes are also asymptonally Gaussian, provided the wavelet has enough vanishing moments.
Abstract: It is well documented that natural images are compressible in wavelet bases and tend to exhibit fractal properties. In this paper, we investigate statistical models that mimic these behaviors. We then use our models to make predictions on the statistics of the wavelet coefficients. Following an innovation modeling approach, we identify a general class of finite-variance self-similar sparse random processes. We first prove that spatially dilated versions of self-similar sparse processes are asymptotically Gaussian as the dilation factor increases. Based on this fundamental result, we show that the coarse-scale wavelet coefficients of these processes are also asymptotically Gaussian, provided the wavelet has enough vanishing moments. Moreover, we quantify the degree of Gaussianity by deriving the theoretical evolution of the kurtosis of the wavelet coefficients across scales. Finally, we apply our analysis to one- and two-dimensional signals, including natural images, and show that the wavelet coefficients ...

22 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...Our motivation is that infinite divisible laws are in correspondence with random processes with independent increments [40, 43]....

    [...]

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations