scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Posted Content
TL;DR: In this article, a generalization of the Black-Scholes model is proposed to capture the subdiffusive nature of an asset price dynamics, which is shown to be arbitrage-free.
Abstract: In this paper we consider a generalization of one of the earliest models of an asset price, namely the Black–Scholes model, which captures the subdiffusive nature of an asset price dynamics. We introduce the geometric Brownian motion time-changed by infinitely divisible inverse subordinators, to reflect underlying anomalous diffusion mechanism. In the proposed model the waiting times (periods when the asset price stays motionless) are modeled by general class of infinitely divisible distributions. We find the corresponding Fractional Fokker–Planck equation governing the probability density function of the introduced process. We prove that considered model is arbitrage-free, construct corresponding martingale measure and show that the model is incomplete. We also find formulas for values of European call and put option prices in subdiffusive Black–Scholes model and show how one can approximate them based on Monte Carlo methods. We present some Monte Carlo simulations for the particular case of tempered alpha-stable distribution of waiting times. We compare obtained results with the classical and subdiffusive alpha-stable Black–Scholes prices.

20 citations


Additional excerpts

  • ...where TΨ (t) is the strictly increasing Lévy process [21] with the Laplace transform 〈exp(−uTΨ (t))〉 = exp(−tΨ(u)) ....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors introduce subordinated fractional L?vy-stable motion with tempered stable waiting times, and propose a simulation scheme and an estimation procedure for its parameters via the Monte Carlo approach.
Abstract: Two phenomena that can be discovered in systems with anomalous diffusion are long-range dependence and trapping events. The first effect concerns events that are arbitrarily distant but still influence each other exceptionally strongly, which is characteristic for anomalous regimes. The second corresponds to the presence of constant values of the underlying process. Motivated by the relatively poor class of models that can cover these two phenomena, we introduce subordinated fractional L?vy-stable motion with tempered stable waiting times. We present in detail its main properties, propose a simulation scheme and give an estimation procedure for its parameters. The last part of the paper is a presentation, via the Monte Carlo approach, of the effectiveness of the estimation of the parameters.

20 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...The idea of subordination was introduced by Bochner in 1949 in [32] and explored further by many authors, see for instance [33]....

    [...]

Journal ArticleDOI
16 Mar 2017
TL;DR: In this article, the existence and uniqueness of functions whose regularity is defined by a scalable, possibly nonsymmetric, Levy measure are proved in the space of functions with regularity defined by the Levy process.
Abstract: Elliptic and parabolic integro-differential model problems are considered in the whole space. By verifying Hormander condition, the existence and uniqueness is proved in \(L_{p}\)-spaces of functions whose regularity is defined by a scalable, possibly nonsymmetric, Levy measure. Some rough probability density function estimates of the associated Levy process are used as well.

20 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...5 in [7], η has a continuos bounded density...

    [...]

Posted Content
TL;DR: Two-armed bandit problems in continuous time are studied, where the risky arm can have two types: High or Low; both types yield stochastic payoffs generated by a Levy process.
Abstract: Bandit problems model the trade-off between exploration and exploitation in various decision problems. We study two-armed bandit problems in continuous time, where the risky arm can have two types: High or Low; both types yield stochastic payoffs generated by a Levy process. We show that the optimal strategy is a cut-off strategy and we provide an explicit expression for the cut-off and for the optimal payoff.

20 citations


Additional excerpts

  • ...I, Definition 4.11) [11]. both P0 and P1 such that E [ S( ∫∞ t H1(s)dH2(s)) | θ ] are well defined for both θ ∈ {0, 1}, we define the following expectation operator: Et,p [ S (∫ ∞ t H1(s)dH2(s) )] : = pE [ S (∫ ∞ t H1(s)dH2(s) )∣∣∣∣ θ = 1 ] + (1− p)E [ S (∫ ∞ t H1(s)dH2(s) )∣∣∣∣ θ = 0 ] ....

    [...]

Journal ArticleDOI
TL;DR: In this paper, several convenient methods for calculation of fractional absolute moments are given with application to heavy tailed distributions, where the main focus is on an infinite variance case with finite mean, that is, they are interested in formulae for $\mathbb{E} [\vert X-\mu\vert^{\gamma}]$ with $1<\gamma<2$ and $\mu\in\mathbb {R}$.
Abstract: Several convenient methods for calculation of fractional absolute moments are given with application to heavy tailed distributions. Our main focus is on an infinite variance case with finite mean, that is, we are interested in formulae for $\mathbb{E} [\vert X-\mu\vert^{\gamma}]$ with $1<\gamma<2$ and $\mu\in\mathbb{R}$. We review techniques of fractional differentiation of Laplace transforms and characteristic functions. Several examples are given with analytical expressions of $\mathbb{E} [\vert X-\mu\vert^{\gamma}]$. We also evaluate the fractional moment errors for both prediction and parameter estimation problems.

20 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...For more details on the definition and properties, we refer to Sato [21]....

    [...]

  • ...[21] Sato, K.-I. (1999) Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge....

    [...]

  • ...4) mγ = 2γΓ((1 + γ)/2)Γ(1 − γ/α) Γ(1− γ/2)Γ(1/2) σ γ , −1 < γ < α, where they rely on the decomposition of the symmetric stable distribution (see also Section 25 in Sato [21])....

    [...]

  • ...In symmetric case (β = 0) with δ = 0, it is shown in Shanbhag and Sreehari [22, Theorem 3] that (2.4) mγ = 2γΓ((1 + γ)/2)Γ(1 − γ/α) Γ(1− γ/2)Γ(1/2) σ γ , −1 γ α, where they rely on the decomposition of the symmetric stable distribution (see also Section 25 in Sato [21])....

    [...]

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations