scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Posted Content
TL;DR: This work proposes a novel notion of admissibility that has many pleasant features - admissible strategy is characterized purely under the objective measure P, and encompasses both the classical mean-variance preferences and the monotone expected utility.
Abstract: The choice of admissible trading strategies in mathematical modelling of financial markets is a delicate issue, going back to Harrison and Kreps (1979). In the context of optimal portfolio selection with expected utility preferences this question has been a focus of considerable attention over the last twenty years. We propose a novel notion of admissibility that has many pleasant features - admissibility is characterized purely under the objective measure; each admissible strategy can be approximated by simple strategies using finite number of trading dates; the wealth of any admissible strategy is a supermartingale under all pricing measures; local boundedness of the price process is not required; neither strict monotonicity, strict concavity nor differentiability of the utility function are necessary; the definition encompasses both the classical mean-variance preferences and the monotone expected utility. For utility functions finite on the whole real line, our class represents a minimal set containing simple strategies which also contains the optimizer, under conditions that are milder than the celebrated reasonable asymptotic elasticity condition on the utility function.

20 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the Levy measure of the underlying subordinator has a completely monotone density under very mild conditions, and integral formulae for the tail distribution P ( τ x > t ) of first passage times τ x through a barrier at x > 0, and its derivatives in t .

20 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...In the development of the fluctuation theory for Lévy processes, many new identities involving first passage times were derived (see [5,10,29,32] for a general account on fluctuation theory), including various other characterisations of P(τx > t), at least in the stable case, see [4,6,9,11,13–15,17,18,25,26,35]....

    [...]

Journal ArticleDOI
22 Jan 2018-Chaos
TL;DR: This work has conducted a series of numerical experiments in "regulating" the likelihood of gene transcription by tuning asymmetric stable Lévy noise indexes, and offers insights for possible ways of achieving gene regulation in experimental research.
Abstract: This work is devoted to investigating the evolution of concentration in a genetic regulation system, when the synthesis reaction rate is under additive and multiplicative asymmetric stable Levy fluctuations. By focusing on the impact of skewness (i.e., non-symmetry) in the probability distributions of noise, we find that via examining the mean first exit time (MFET) and the first escape probability (FEP), the asymmetric fluctuations, interacting with nonlinearity in the system, lead to peculiar likelihood for transcription. This includes, in the additive noise case, realizing higher likelihood of transcription for larger positive skewness (i.e., asymmetry) index β, causing a stochastic bifurcation at the non-Gaussianity index value α = 1 (i.e., it is a separating point or line for the likelihood for transcription), and achieving a turning point at the threshold value β≈−0.5 (i.e., beyond which the likelihood for transcription suddenly reversed for α values). The stochastic bifurcation and turning point ph...

20 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...The generator A for the stochastic differential equation (2) with asymmetric stable Lévy motion is [33, 36]...

    [...]

  • ...For the stable Lévy motion with the jump measure in (3), the number of larger jumps for small α (0 < α < 1) are more than that for large α (1 < α < 2), while the number of smaller jumps for 0 < α < 1 are less than that for 1 < α < 2, as known in [36]....

    [...]

  • ...Note that symmetry (zero skewness) in stable Lévy noise is an idealized, special situation [32, 36]....

    [...]

Journal ArticleDOI
TL;DR: An integral representation for the generalized hypergeometric function unifying known representations via generalized Stieltjes, Laplace, and cosine Fourier transforms is found in this article using positivity conditions for the weight in this representation.
Abstract: An integral representation for the generalized hypergeometric function unifying known representations via generalized Stieltjes, Laplace, and cosine Fourier transforms is found. Using positivity conditions for the weight in this representation, various new facts regarding generalized hypergeometric functions, including complete monotonicity, log-convexity in upper parameters, monotonicity of ratios, and new proofs of Luke’s bounds are established. In addition, two-sided inequalities for the Bessel type hypergeometric functions are derived with the use of their series representations. Bibliography: 22 titles.

20 citations

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations