scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the Holder regularity of bounded harmonic functions with respect to solutions to stochastic systems of order was proved for one-dimensional symmetric stable processes of order.
Abstract: We study harmonic functions associated to systems of stochastic differential equations of the form $$dX_t^i=A_{i1}(X_{t-})dZ_t^1+\cdots +A_{id}(X_{t-})dZ_t^d$$ , $$i\in \{1,\dots ,d\}$$ , where $$Z_t^j$$ are independent one-dimensional symmetric stable processes of order $$\alpha _j\in (0,2)$$ , $$j\in \{1,\dots ,d\}$$ . In this article we prove Holder regularity of bounded harmonic functions with respect to solutions to such systems.

15 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...For a deeper discussion on Lévy processes and their generators we refer the reader to [30]....

    [...]

DissertationDOI
30 Oct 2012
TL;DR: It is the main concern of this thesis to develop strategies to dealing with the stochastic penalty term, and the most important step in this direction will be a modified estimator of the unknown characteristic function in the denominator, which allows to make the pointwise control of this object uniform on the real line.
Abstract: This thesis deals with nonparametric estimation methods for discretely observed Lévy processes. The following statistical framework is considered: A Lévy process X having finite variation on compact sets and finite second moments is observed at low frequency. In this situation, the jump dynamics is fully described by the finite signed measure μ(dx) = xν(dy). The goal is to estimate, nonparametrically, some linear functional of μ. In the first part of this thesis, kernel estimators are constructed and upper bounds on the corresponding risk are provided. From this, rates of convergence are derived, under global as well as under local regularity assumptions on the Lévy measure. For particular cases, minimax lower bounds are proved. The rates of convergence are thus shown to be optimal in the minimax sense. The focus of this thesis lies on the problem of adaptive estimation, more precisely, on the data driven choice of the smoothing parameter, which is being considered in the second part. Since nonparametric estimation methods for Lévy processes have strong structural similarities with with nonparametric density deconvolution with unknown error density, both fields are discussed in parallel and the concepts are developed in generality, for Lévy processes as well as for density deconvolution. The choice of the bandwidth is realized, using techniques of model selection via penalization. The principle of model selection via penalization usually relies on the fact that the fluctuation of certain stochastic quantities can be controlled by penalizing with a deterministic term. Contrarily to this, the variance is unknown in the setting investigated here and the penalty term is hence itself a stochastic quantity. It is the main concern of this thesis to develop strategies to dealing with the stochastic penalty term. The most important step in this direction will be a modified estimator of the unknown characteristic function in the denominator, which allows to make the pointwise control of this object uniform on the real line. The main technical tools involved in the arguments are concentration inequalities of Talagrand type for empirical processes.

15 citations

Journal ArticleDOI
TL;DR: In this paper, a model with the dependence through fractal activity time is described, which is implemented via superpositions of Ornstein-Uhlenbeck type processes driven by Levy noise.
Abstract: Risky asset models with the dependence through fractal activity time are described. The construction of the fractal activity time is implemented via superpositions of Ornstein-Uhlenbeck type processes driven by Levy noise. The model features both tractable dependence structure and desired marginal distributions of the returns from the generalized hyperbolic class: the Variance Gamma and normal inverse Gaussian. These distributions provide good fit to real financial data. Pricing formulae for the proposed models are derived.

15 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...1 of [33] (see also [36, 37]) one can obtain that the temporally homogeneous transition function Pt x B for the solution of Ornstein–Uhlenbeck type process satisfies ∫...

    [...]

Posted Content
TL;DR: In this article, the authors unify and extend a number of approaches related to constructing multivariate Variance-Gamma (V.G.) models for option pricing, and derive an overarching model by subordinating multivariate Brownian motion to a subordinator from the Thorin (1977) class of generalised Gamma convolution subordinators.
Abstract: We unify and extend a number of approaches related to constructing multivariate Variance-Gamma (V.G.) models for option pricing. An overarching model is derived by subordinating multivariate Brownian motion to a subordinator from the Thorin (1977) class of generalised Gamma convolution subordinators. A class of models due to Grigelionis (2007), which contains the well-known Madan-Seneta V.G. model, is of this type, but our multivariate generalization is considerably wider, allowing in particular for processes with infinite variation and a variety of dependencies between the underlying processes. Multivariate classes developed by Perez-Abreu and Stelzer (2012) and Semeraro (2008) and Guillaume (2013) are also submodels. The new models are shown to be invariant under Esscher transforms, and quite explicit expressions for canonical measures (and transition densities in some cases) are obtained, which permit applications such as option pricing using PIDEs or tree based methodologies. We illustrate with best-of and worst-of European and American options on two assets.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study asymptotic properties of spatially non-homogeneous random walks with non-integrable increments, including transience, almost-sure bounds, and existence and non existence of moments for first-passage and last-exit times.
Abstract: We study asymptotic properties of spatially non-homogeneous random walks with non-integrable increments, including transience, almost-sure bounds, and existence and non existence of moments for first-passage and last-exit times. In our proofs we also make use of estimates for hitting probabilities and large deviations bounds. Our results are more general than existing results in the literature, which consider only the case of sums of independent (typically, identically distributed) random variables. We do not assume the Markov property. Existing results that we generalize include a circle of ideas related to the Marcinkiewicz-Zygmund strong law of large numbers, as well as more recent work of Kesten and Maller. Our proofs are robust and use martingale methods. We demonstrate the benefit of the generality of our results by applications to some non-classical models, including random walks with heavy-tailed increments on two-dimensional strips, which include, for instance, certain generalized risk processes.

15 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...Many of the results that we discuss for random walks have analogues for suitable Lévy processes: see e.g. the book of Sato [35], particularly Sections 37 and 48....

    [...]

  • ...the book of Sato [35], particularly Sections 37 and 48....

    [...]

References
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations

Book ChapterDOI
TL;DR: In this article, the authors give an up-to-date account of the theory and applications of scale functions for spectrally negative Levy processes, including the first extensive overview of how to work numerically with scale functions.
Abstract: The purpose of this review article is to give an up to date account of the theory and applications of scale functions for spectrally negative Levy processes. Our review also includes the first extensive overview of how to work numerically with scale functions. Aside from being well acquainted with the general theory of probability, the reader is assumed to have some elementary knowledge of Levy processes, in particular a reasonable understanding of the Levy–Khintchine formula and its relationship to the Levy–Ito decomposition. We shall also touch on more general topics such as excursion theory and semi-martingale calculus. However, wherever possible, we shall try to focus on key ideas taking a selective stance on the technical details. For the reader who is less familiar with some of the mathematical theories and techniques which are used at various points in this review, we note that all the necessary technical background can be found in the following texts on Levy processes; (Bertoin, Levy Processes (1996); Sato, Levy Processes and Infinitely Divisible Distributions (1999); Kyprianou, Introductory Lectures on Fluctuations of Levy Processes and Their Applications (2006); Doney, Fluctuation Theory for Levy Processes (2007)), Applebaum Levy Processes and Stochastic Calculus (2009).

288 citations

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations