scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...There can be no doubt, particularly to the more experienced reader, that the current text has been heavily influenced by the outstanding books of Bertoin (1996) and Sato (1999), and especially the former which also takes a predominantly pathwise approach to its content....

    [...]

  • ...See Zolotarev (1986), Sato (1999) and (Samorodnitsky and Taqqu, 1994) for further details of all the facts given in this paragraph....

    [...]

  • ...The interested reader is referred to Lukacs (1970) or Sato (1999), to name but two of many possible references....

    [...]

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...Distributional definition of L is also studied in [7, 34, 42], see also [3, 43]....

    [...]

  • ...Yet another way to show (10) involves vague convergence of tpt(z)dz to ν(z)dz = cd,α|z|dz as t → 0, which is a general result in the theory of convolution semigroups, see [43]....

    [...]

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

Journal ArticleDOI
TL;DR: For the isotropic unimodal probability convolutional semigroups, this article gave sharp bounds for their Levy-Khintchine exponent with Matuszewska indices strictly between 0 and 2.

172 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations

References
More filters
DissertationDOI
01 Jan 2012
TL;DR: In this article, the authors considered the numerical approximation of option prices in different market models beyond Lévy processes and proved the well-posedness of the arising pricing equations using pseudodifferential operator theory.
Abstract: This work considers the numerical approximation of option prices in different market models beyond Lévy processes. The Lévy setup is extended in several directions. The arising partial integrodifferential equations and inequalities are solved with the finite element method. European as well as American type contracts are considered. Spatially inhomogeneous market models are analyzed, specifically certain Feller processes are considered. The well-posedness of the arising pricing equations is proved using pseudodifferential operator theory. The resulting pricing equations need no longer be parabolic and can exhibit degeneracies under certain conditions. Classical continuous Galerkin methods are therefore inapplicable for the numerical solution of the corresponding pricing equations. Thus we employ a discontinuous Galerkin discretization or alternatively a streamline diffusion approach. Convergence results are shown in both cases. Besides the spatial inhomogeneity, also the assumption of temporal homogeneity of the coefficients of the partial integrodifferential equations is weakened. The well-posedness for pricing equations with degenerate coefficients in time is shown via a weak space-time formulation. The main problem arising in the discretization of such equations is the non-applicability of classical time-marching schemes due to the possible degeneracy of the coefficients. Therefore two alternative approaches are considered. First, a continuous Galerkin method for the space-time discretization is used, in this case optimality of the solution algorithm can be shown. Second, a discontinuous Galerkin discretization for the temporal domain is studied, in which case exponential convergence of the algorithm can be shown. Numerical examples are given to confirm the theoretical results. Partial integrodifferential equations with spatially as well as temporally inhomogeneous coefficients are solved numerically. European and American options are priced.

7 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the cut-off phenomenon under the total variation distance of Ornstein-Uhlenbeck processes which are driven by Levy processes, and they proved that the profile function always exists in reversible cases and it may exist in non-reversible cases under suitable conditions on the limiting distribution.
Abstract: In this paper, we study the cut-off phenomenon under the total variation distance of $d$-dimensional Ornstein-Uhlenbeck processes which are driven by Levy processes. That is to say, under the total variation distance, there is an abrupt convergence of the aforementioned process to its equilibrium, i.e. limiting distribution. Despite that the limiting distribution is not explicit, its distributional properties allow us to deduce that a profile function always exists in the reversible cases and it may exist in the non-reversible cases under suitable conditions on the limiting distribution. The cut-off phenomena for the average and superposition processes are also determined.

7 citations

Journal ArticleDOI
TL;DR: In this paper, three superpositions of COGARCH (sup-CO-GARCH) volatility processes driven by Levy processes or Levy bases are proposed, and the second-order properties, jump behaviour, and jump behavior is investigated.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a new and general approach to build dependence in multivariate Levy processes, which allows the calibration of any smooth transition between independence and a large amount of linear dependence and provides greater flexibility in calibrating nonlinear dependence.
Abstract: In this work we propose a new and general approach to build dependence in multivariate Levy processes. We fully characterize a multivariate Levy process whose margins are able to approximate any Levy type. Dependence is generated by one or more common sources of jump intensity separately in jumps of any sign and size and a parsimonious method to determine the intensities of these common factors is proposed. Such a new approach allows the calibration of any smooth transition between independence and a large amount of linear dependence and provides greater flexibility in calibrating nonlinear dependence than in other comparable Levy models in the literature. The model is analytically tractable and a straightforward multivariate simulation procedure is available. An empirical analysis shows an accurate multivariate fit of stock returns in terms of linear and nonlinear dependence. A numerical illustration of multi-asset option pricing emphasizes the importance of the proposed new approach for modeling dependence.

7 citations