scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...There can be no doubt, particularly to the more experienced reader, that the current text has been heavily influenced by the outstanding books of Bertoin (1996) and Sato (1999), and especially the former which also takes a predominantly pathwise approach to its content....

    [...]

  • ...See Zolotarev (1986), Sato (1999) and (Samorodnitsky and Taqqu, 1994) for further details of all the facts given in this paragraph....

    [...]

  • ...The interested reader is referred to Lukacs (1970) or Sato (1999), to name but two of many possible references....

    [...]

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...Distributional definition of L is also studied in [7, 34, 42], see also [3, 43]....

    [...]

  • ...Yet another way to show (10) involves vague convergence of tpt(z)dz to ν(z)dz = cd,α|z|dz as t → 0, which is a general result in the theory of convolution semigroups, see [43]....

    [...]

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

Journal ArticleDOI
TL;DR: For the isotropic unimodal probability convolutional semigroups, this article gave sharp bounds for their Levy-Khintchine exponent with Matuszewska indices strictly between 0 and 2.

172 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations

References
More filters
Posted Content
TL;DR: The mathematical theory of Brownian motion and related stochastic processes is related to other branches of mathematics, most notably the classical theory of partial differential equations associated with the Laplace and heat operators, and various generalizations thereof as mentioned in this paper.
Abstract: This is a guide to the mathematical theory of Brownian motion and related stochastic processes, with indications of how this theory is related to other branches of mathematics, most notably the classical theory of partial differential equations associated with the Laplace and heat operators, and various generalizations thereof. As a typical reader, we have in mind a student, familiar with the basic concepts of probability based on measure theory, at the level of the graduate texts of Billingsley and Durrett , and who wants a broader perspective on the theory of Brownian motion and related stochastic processes than can be found in these texts.

37 citations

Posted Content
TL;DR: In this article, the spectral expansion in a weighted Hilbert space of a substantial class of invariant non-self-adjoint and non-local Markov operators which appear in limit theorems for positive-valued Markov processes is provided.
Abstract: We provide the spectral expansion in a weighted Hilbert space of a substantial class of invariant non-self-adjoint and non-local Markov operators which appear in limit theorems for positive-valued Markov processes. We show that this class is in bijection with a subset of negative definite functions and we name it the class of generalized Laguerre semigroups. Our approach, which goes beyond the framework of perturbation theory, is based on an in-depth and original analysis of an intertwining relation that we establish between this class and a self-adjoint Markov semigroup, whose spectral expansion is expressed in terms of the classical Laguerre polynomials. As a by-product, we derive smoothness properties for the solution to the associated Cauchy problem as well as for the heat kernel. Our methodology also reveals a variety of possible decays, including the hypocoercivity type phenomena, for the speed of convergence to equilibrium for this class and enables us to provide an interpretation of these in terms of the rate of growth of the weighted Hilbert space norms of the spectral projections. Depending on the analytic properties of the aforementioned negative definite functions, we are led to implement several strategies, which require new developments in a variety of contexts, to derive precise upper bounds for these norms.

37 citations

Journal ArticleDOI
TL;DR: An eigenfunction expansion approach to solve discretely monitored first passage time problems for a rich class of Markov processes, including diffusions and subordinate diffusions with jumps, whose transition or Feynman–Kac semigroups possess eigen function expansions in L2$L^{2}$-spaces.
Abstract: This paper develops an eigenfunction expansion approach to solve discretely monitored first passage time problems for a rich class of Markov processes, including diffusions and subordinate diffusions with jumps, whose transition or Feynman–Kac semigroups possess eigenfunction expansions in $L^{2}$ -spaces. Many processes important in finance are in this class, including OU, CIR, (JD)CEV diffusions and their subordinate versions with jumps. The method represents the solution to a discretely monitored first passage problem in the form of an eigenfunction expansion with expansion coefficients satisfying an explicitly given recursion. A range of financial applications is given, drawn from across equity, credit, commodity, and interest rate markets. Numerical examples demonstrate that even in the case of frequent barrier monitoring, such as daily, approximating discrete first passage time problems with continuous solutions may result in unacceptably large errors in financial applications. This highlights the relevance of the method to financial applications.

37 citations

Book ChapterDOI
TL;DR: Magnitude is a numerical isometric invariant of metric spaces, whose definition arises from a precise analogy between categories and metric spaces as mentioned in this paper, and it can encode many invariants from integral geometry and geometric measure theory, including volume, capacity, dimension, and intrinsic volumes.
Abstract: Magnitude is a numerical isometric invariant of metric spaces, whose definition arises from a precise analogy between categories and metric spaces. Despite this exotic provenance, magnitude turns out to encode many invariants from integral geometry and geometric measure theory, including volume, capacity, dimension, and intrinsic volumes. This paper gives an overview of the theory of magnitude, from its category-theoretic genesis to its connections with these geometric quantities. Some new results are proved, including a geometric formula for the magnitude of a convex body in l n.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the generalized Keller-Segel (KS) system with a nonlocal diffusion term was investigated and the global existence of weak solutions was proved for the initial density, where the weak solution satisfies some hyper-contractive and decay estimates in $L^r$ for any $1< r<\infty.
Abstract: This paper investigates the generalized Keller-Segel (KS) system with a nonlocal diffusion term $- u(-\Delta)^{\frac{\alpha}{2}}\rho~(1<\alpha<2)$. Firstly, the global existence of weak solutions is proved for the initial density $\rho_0\in L^1\cap L^{\frac{d}{\alpha}}(\mathbb{R}^d)~(d\geq2)$ with $\|\rho_0\|_{\frac {d}{\alpha}} < K$, where $K$ is a universal constant only depending on $d,\alpha, u$. Moreover, the conservation of mass holds true and the weak solution satisfies some hyper-contractive and decay estimates in $L^r$ for any $1< r<\infty$. Secondly, for the more general initial data $\rho_0\in L^1\cap L^2(\mathbb{R}^d)$$~(d=2,3)$, the local existence is obtained. Thirdly, for $\rho_0\in L^1\big(\mathbb{R}^d,(1+|x|)dx\big)\cap L^\infty(\mathbb{R}^d)(~d\geq2)$ with $\|\rho_0\|_{\frac{d}{\alpha}} < K$, we prove the uniqueness and stability of weak solutions under Wasserstein metric through the method of associating the KS equation with a self-consistent stochastic process driven by the rotationally invariant $\alpha$-stable Levy process $L_{\alpha}(t)$. Also, we prove the weak solution is $L^\infty$ bounded uniformly in time. Lastly, we consider the $N$-particle interacting system with the Levy process $L_{\alpha}(t)$ and the Newtonian potential aggregation and prove that the expectation of collision time between particles is below a universal constant if the moment $\int_{\mathbb{R}^d}|x|^\gamma\rho_0dx$ for some $1<\gamma<\alpha$ is below a universal constant $K_\gamma$ and $ u$ is also below a universal constant. Meanwhile, we prove the propagation of chaos as $N\rightarrow\infty$ for the interacting particle system with a cut-off parameter $\varepsilon\sim(\ln N)^{-\frac{1}{d}}$, and show that the mean field limit equation is exactly the generalized KS equation.

37 citations