scispace - formally typeset
Search or ask a question
Book

Lévy processes and infinitely divisible distributions

01 Jan 2013-
TL;DR: In this paper, the authors consider the distributional properties of Levy processes and propose a potential theory for Levy processes, which is based on the Wiener-Hopf factorization.
Abstract: Preface to the revised edition Remarks on notation 1. Basic examples 2. Characterization and existence 3. Stable processes and their extensions 4. The Levy-Ito decomposition of sample functions 5. Distributional properties of Levy processes 6. Subordination and density transformation 7. Recurrence and transience 8. Potential theory for Levy processes 9. Wiener-Hopf factorizations 10. More distributional properties Supplement Solutions to exercises References and author index Subject index.
Citations
More filters
BookDOI
01 Jan 2014
TL;DR: In this article, Kloeden, P., Ombach, J., Cyganowski, S., Kostrikin, A. J., Reddy, J.A., Pokrovskii, A., Shafarevich, I.A.
Abstract: Algebra and Famous Inpossibilities Differential Systems Dumortier.: Qualitative Theory of Planar Jost, J.: Dynamical Systems. Examples of Complex Behaviour Jost, J.: Postmodern Analysis Jost, J.: Riemannian Geometry and Geometric Analysis Kac, V.; Cheung, P.: Quantum Calculus Kannan, R.; Krueger, C.K.: Advanced Analysis on the Real Line Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane Kempf, G.: Complex Abelian Varieties and Theta Functions Kitchens, B. P.: Symbolic Dynamics Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments Kostrikin, A. I.: Introduction to Algebra Krasnoselskii, M.A.; Pokrovskii, A.V.: Systems with Hysteresis Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction Lang, S.: Introduction to Differentiable Manifolds Luecking, D.H., Rubel, L.A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic Marcus, D.A.: Number Fields Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis Matoušek, J.: Using the Borsuk-Ulam Theorem Matsuki, K.: Introduction to the Mori Program Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1 Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2 Mc Carthy, P. J.: Introduction to Arithmetical Functions McCrimmon, K.: A Taste of Jordan Algebras Meyer, R.M.: Essential Mathematics for Applied Field Meyer-Nieberg, P.: Banach Lattices Mikosch, T.: Non-Life Insurance Mathematics Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra Moise, E. E.: Introductory Problem Courses in Analysis and Topology Montesinos-Amilibia, J.M.: Classical Tessellations and Three Manifolds Morris, P.: Introduction to Game Theory Nikulin, V.V.; Shafarevich, I. R.: Geometries and Groups Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics Øksendal, B.: Stochastic Differential Equations Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions Poizat, B.: A Course in Model Theory Polster, B.: A Geometrical Picture Book Porter, J. R.; Woods, R.G.: Extensions and Absolutes of Hausdorff Spaces Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization Ramsay, A.; Richtmeyer, R.D.: Introduction to Hyperbolic Geometry Rees, E.G.: Notes on Geometry Reisel, R. B.: Elementary Theory of Metric Spaces Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods Ribenboim, P.: Classical Theory of Algebraic Numbers Rickart, C. E.: Natural Function Algebras Roger G.: Analysis II Rotman, J. J.: Galois Theory Jost, J.: Compact Riemann Surfaces Applications ́ Introductory Lectures on Fluctuations of Levy Processes with Kyprianou, A. : Rautenberg, W.; A Concise Introduction to Mathematical Logic Samelson, H.: Notes on Lie Algebras Schiff, J. L.: Normal Families Sengupta, J.K.: Optimal Decisions under Uncertainty Séroul, R.: Programming for Mathematicians Seydel, R.: Tools for Computational Finance Shafarevich, I. R.: Discourses on Algebra Shapiro, J. H.: Composition Operators and Classical Function Theory Simonnet, M.: Measures and Probabilities Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry Smith, K.T.: Power Series from a Computational Point of View Smoryński, C.: Logical Number Theory I. An Introduction Stichtenoth, H.: Algebraic Function Fields and Codes Stillwell, J.: Geometry of Surfaces Stroock, D.W.: An Introduction to the Theory of Large Deviations Sunder, V. S.: An Invitation to von Neumann Algebras Tamme, G.: Introduction to Étale Cohomology Tondeur, P.: Foliations on Riemannian Manifolds Toth, G.: Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems Wong, M.W.: Weyl Transforms Xambó-Descamps, S.: Block Error-Correcting Codes Zaanen, A.C.: Continuity, Integration and Fourier Theory Zhang, F.: Matrix Theory Zong, C.: Sphere Packings Zong, C.: Strange Phenomena in Convex and Discrete Geometry Zorich, V.A.: Mathematical Analysis I Zorich, V.A.: Mathematical Analysis II Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations Sagan, H.: Space-Filling Curves Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors Runde, V.: A Taste of Topology Rubel, L.A.: Entire and Meromorphic Functions Weintraub, S.H.: Galois Theory

401 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...There can be no doubt, particularly to the more experienced reader, that the current text has been heavily influenced by the outstanding books of Bertoin (1996) and Sato (1999), and especially the former which also takes a predominantly pathwise approach to its content....

    [...]

  • ...See Zolotarev (1986), Sato (1999) and (Samorodnitsky and Taqqu, 1994) for further details of all the facts given in this paragraph....

    [...]

  • ...The interested reader is referred to Lukacs (1970) or Sato (1999), to name but two of many possible references....

    [...]

Journal ArticleDOI
TL;DR: In this article, several definitions of the Riesz fractional Laplace operator in R^d have been studied, including singular integrals, semigroups of operators, Bochner's subordination, and harmonic extensions.
Abstract: This article reviews several definitions of the fractional Laplace operator (-Delta)^{alpha/2} (0 < alpha < 2) in R^d, also known as the Riesz fractional derivative operator, as an operator on Lebesgue spaces L^p, on the space C_0 of continuous functions vanishing at infinity and on the space C_{bu} of bounded uniformly continuous functions. Among these definitions are ones involving singular integrals, semigroups of operators, Bochner's subordination and harmonic extensions. We collect and extend known results in order to prove that all these definitions agree: on each of the function spaces considered, the corresponding operators have common domain and they coincide on that common domain.

372 citations


Cites background from "Lévy processes and infinitely divis..."

  • ...Distributional definition of L is also studied in [7, 34, 42], see also [3, 43]....

    [...]

  • ...Yet another way to show (10) involves vague convergence of tpt(z)dz to ν(z)dz = cd,α|z|dz as t → 0, which is a general result in the theory of convolution semigroups, see [43]....

    [...]

Journal ArticleDOI
TL;DR: A closed formula for prices of perpetual American call options in terms of the overall supremum of the Lévy process, and a corresponding closed formulas for perpetual American put options involving the infimum of the after-mentioned process are obtained.
Abstract: Consider a model of a financial market with a stock driven by a Levy process and constant interest rate. A closed formula for prices of perpetual American call options in terms of the overall supremum of the Levy process, and a corresponding closed formula for perpetual American put options involving the infimum of the after-mentioned process are obtained. As a direct application of the previous results, a Black-Scholes type formula is given. Also as a consequence, simple explicit formulas for prices of call options are obtained for a Levy process with positive mixed-exponential and arbitrary negative jumps. In the case of put options, similar simple formulas are obtained under the condition of negative mixed-exponential and arbitrary positive jumps. Risk-neutral valuation is discussed and a simple jump-diffusion model is chosen to illustrate the results.

269 citations

Journal ArticleDOI
TL;DR: For the isotropic unimodal probability convolutional semigroups, this article gave sharp bounds for their Levy-Khintchine exponent with Matuszewska indices strictly between 0 and 2.

172 citations

01 May 2013
TL;DR: In this paper, the authors review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics.
Abstract: We review work on extreme events, their causes and consequences, by a group of European and American researchers involved in a three-year project on these topics. The review covers theoretical aspects of time series analysis and of extreme value theory, as well as of the deterministic modeling of extreme events, via continuous and discrete dynamic models. The applications include climatic, seismic and socio-economic events, along with their prediction. Two important results refer to (i) the complementarity of spectral analysis of a time series in terms of the continuous and the discrete part of its power spectrum; and (ii) the need for coupled modeling of natural and socio-economic systems. Both these results have implications for the study and prediction of natural hazards and their human impacts.

166 citations

References
More filters
Posted Content
TL;DR: In this article, the representation of an important sublinear expectation under which a new stochastic process G-L\'evy process has been introduced is studied. And the existence of a weakly compact family of probability measures to give the representation by using two different methods.
Abstract: In this paper, we are concerned with the representation of an important sublinear expectation under which framework a new stochastic process G-L\'evy process has been introduced. We show the existence of a weakly compact family of probability measures to give the representation by using two different methods.

15 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the class of convolution equivalent distributions and locally subexponential distributions are not closed under convolution roots, which is a negative answer to the classical conjectures of Embrechts and Goldie.
Abstract: We show that the class of convolution equivalent distributions and the class of locally subexponential distributions are not closed under convolution roots. It gives a negative answer to the classical conjectures of Embrechts and Goldie. Moreover, we establish two sufficient conditions in order that the class of convolution equivalent distributions is closed under convolution roots.

15 citations

DOI
01 Jan 2012
TL;DR: This work considers the discretization of degenerate, time-inhomogeneous Fokker-Planck equations for diffusion problems in high-dimensional domains and showstic regularity of the time-dependence of the solution in countably normed, weighted Sobolev spaces.
Abstract: We consider the discretization of degenerate, time-inhomogeneous Fokker-Planck equations for diffusion problems in high-dimensional domains. Well-posedness of the problem in time-weighted Bochner spaces is established. Analytic regularity of the time-dependence of the solution in countably normed, weighted Sobolev spaces is established. Time discretization by the hp-discontinuous Galerkin method is shown to converge exponentially. The resulting elliptic spatial problems are discretized with the use of the tensorproduct “hat” finite elements constructed on uniform or patch-wise uniform (Shishkin) meshes and are solved in the Quantized Tensor Train representation. For numerical experiments we consider compatible and incompatible initial data in up to 40 and 18 dimensions respectively on a workstation.

15 citations

Journal ArticleDOI
TL;DR: This work generalizes from quadratic variation to G-variation, which generalizes power variation, and applies these tools to analyze and minimize the risk in a family of hedging strategies for G-Variation.
Abstract: For a family of functions G, we define the G-variation, which generalizes power variation; G-variation swaps, which pay the G-variation of the returns on an underlying share price F; and share-weighted G-variation swaps, which pay the integral of F with respect to G-variation. For instance, the case G(x)=x 2 reduces these notions to, respectively, quadratic variation, variance swaps, and gamma swaps. We prove that a multiple of a log contract prices a G-variation swap, and a multiple of an FlogF contract prices a share-weighted G-variation swap, under arbitrary exponential Levy dynamics, stochastically time-changed by an arbitrary continuous clock having arbitrary correlation with the Levy driver, under integrability conditions. We solve for the multipliers, which depend only on the Levy process, not on the clock. In the case of quadratic G and continuity of the underlying paths, each valuation multiplier is 2, recovering the standard no-jump variance and gamma-swap pricing results. In the presence of jump risk, however, we show that the valuation multiplier differs from 2, in a way that relates (positively or negatively, depending on the specified G) to the Levy measure’s skewness. In three directions this work extends Carr–Lee–Wu, which priced only variance swaps. First, we generalize from quadratic variation to G-variation; second, we solve for not only unweighted but also share-weighted payoffs; and third, we apply these tools to analyze and minimize the risk in a family of hedging strategies for G-variation.

15 citations

Dissertation
01 Jan 2010
TL;DR: The mean-variance hedging strategy is one of the two main quadratic hedging strategies as discussed by the authors, where the goal is to minimize the difference between the claim H at maturity T and the portfolio at that time, using a self-financing strategy.
Abstract: Quadratic hedging is a specific form of utility hedging, where the strategy minimizes the hedging error in mean square sense. Hence risk is in this case quantified as variance. One of the obvious drawbacks of quadratic hedging is that losses and gains are treated in the same way. On the other hand, this might be an advantage, in case you do not know whether you deal with a buyer or a seller. Another advantage is that quadratic strategies related to different options can simply be added up as is also the case for delta-hedging strategies. In other words, quadratic hedging is a sort of linear hedging strategy. The mean-variance hedging strategy is one of the two main quadratic hedging strategies we will discuss. The other one is the (locally) risk-minimizing hedging strategy. In the mean-variance hedging theory the goal is to minimize the difference between the claim H at maturity T and the portfolio at that time, using a self-financing strategy. In the risk-minimizing hedging strategy, the goal is to minimize the variance of the cost process at any time t subject to the condition that the value of the portfolio at time T equals the claim H. In the latter case, it is only possible to find a self-financing portfolio when the claim is attainable. The risk-minimizing hedging strategy only makes sense when the underlying is a martingale, the extension to semimartingales is called local risk-minimization. We focus mainly on quadratic hedging and especially on the locally risk-minimizing hedging strategy and related to it, the Follmer-Schweizer decomposition. We do not only look at the pure financial market, but we also determine hedging strategies for the insurance market, as well as for the interest rate derivatives market and the commodity market. At the end we also discuss the implementation of the quadratic hedging strategies and compare the total costs related to different hedging strategies.

15 citations