scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Li‐Ion Synaptic Transistor for Low Power Analog Computing

TL;DR: Nonvolatile redox transistors based upon Li-ion battery materials are demonstrated as memory elements for neuromorphic computer architectures with multi-level analog states, "write" linearity, low-voltage switching, and low power dissipation.
Abstract: Nonvolatile redox transistors (NVRTs) based upon Li-ion battery materials are demonstrated as memory elements for neuromorphic computer architectures with multi-level analog states, "write" linearity, low-voltage switching, and low power dissipation. Simulations of backpropagation using the device properties reach ideal classification accuracy. Physics-based simulations predict energy costs per "write" operation of <10 aJ when scaled to 200 nm × 200 nm.
Citations
More filters
Journal ArticleDOI
TL;DR: The Computational Brain this paper provides a broad overview of neuroscience and computational theory, followed by a study of some of the most recent and sophisticated modeling work in the context of relevant neurobiological research.

1,472 citations

Journal ArticleDOI
01 Jan 2018
TL;DR: The state of the art in memristor-based electronics is evaluated and the future development of such devices in on-chip memory, biologically inspired computing and general-purpose in-memory computing is explored.
Abstract: A memristor is a resistive device with an inherent memory. The theoretical concept of a memristor was connected to physically measured devices in 2008 and since then there has been rapid progress in the development of such devices, leading to a series of recent demonstrations of memristor-based neuromorphic hardware systems. Here, we evaluate the state of the art in memristor-based electronics and explore where the future of the field lies. We highlight three areas of potential technological impact: on-chip memory and storage, biologically inspired computing and general-purpose in-memory computing. We analyse the challenges, and possible solutions, associated with scaling the systems up for practical applications, and consider the benefits of scaling the devices down in terms of geometry and also in terms of obtaining fundamental control of the atomic-level dynamics. Finally, we discuss the ways we believe biology will continue to provide guiding principles for device innovation and system optimization in the field. This Perspective evaluates the state of the art in memristor-based electronics and explores the future development of such devices in on-chip memory, biologically inspired computing and general-purpose in-memory computing.

1,231 citations

Journal ArticleDOI
06 Jun 2018-Nature
TL;DR: Mixed hardware–software neural-network implementations that involve up to 204,900 synapses and that combine long-term storage in phase-change memory, near-linear updates of volatile capacitors and weight-data transfer with ‘polarity inversion’ to cancel out inherent device-to-device variations are demonstrated.
Abstract: Neural-network training can be slow and energy intensive, owing to the need to transfer the weight data for the network between conventional digital memory chips and processor chips. Analogue non-volatile memory can accelerate the neural-network training algorithm known as backpropagation by performing parallelized multiply-accumulate operations in the analogue domain at the location of the weight data. However, the classification accuracies of such in situ training using non-volatile-memory hardware have generally been less than those of software-based training, owing to insufficient dynamic range and excessive weight-update asymmetry. Here we demonstrate mixed hardware-software neural-network implementations that involve up to 204,900 synapses and that combine long-term storage in phase-change memory, near-linear updates of volatile capacitors and weight-data transfer with 'polarity inversion' to cancel out inherent device-to-device variations. We achieve generalization accuracies (on previously unseen data) equivalent to those of software-based training on various commonly used machine-learning test datasets (MNIST, MNIST-backrand, CIFAR-10 and CIFAR-100). The computational energy efficiency of 28,065 billion operations per second per watt and throughput per area of 3.6 trillion operations per second per square millimetre that we calculate for our implementation exceed those of today's graphical processing units by two orders of magnitude. This work provides a path towards hardware accelerators that are both fast and energy efficient, particularly on fully connected neural-network layers.

693 citations

Posted Content
TL;DR: An exhaustive review of the research conducted in neuromorphic computing since the inception of the term is provided to motivate further work by illuminating gaps in the field where new research is needed.
Abstract: Neuromorphic computing has come to refer to a variety of brain-inspired computers, devices, and models that contrast the pervasive von Neumann computer architecture This biologically inspired approach has created highly connected synthetic neurons and synapses that can be used to model neuroscience theories as well as solve challenging machine learning problems The promise of the technology is to create a brain-like ability to learn and adapt, but the technical challenges are significant, starting with an accurate neuroscience model of how the brain works, to finding materials and engineering breakthroughs to build devices to support these models, to creating a programming framework so the systems can learn, to creating applications with brain-like capabilities In this work, we provide a comprehensive survey of the research and motivations for neuromorphic computing over its history We begin with a 35-year review of the motivations and drivers of neuromorphic computing, then look at the major research areas of the field, which we define as neuro-inspired models, algorithms and learning approaches, hardware and devices, supporting systems, and finally applications We conclude with a broad discussion on the major research topics that need to be addressed in the coming years to see the promise of neuromorphic computing fulfilled The goals of this work are to provide an exhaustive review of the research conducted in neuromorphic computing since the inception of the term, and to motivate further work by illuminating gaps in the field where new research is needed

570 citations

Journal ArticleDOI
01 Jul 2018
TL;DR: This Review Article examines the development of organic neuromorphic devices, considering the different switching mechanisms used in the devices and the challenges the field faces in delivering neuromorphic computing applications.
Abstract: Neuromorphic computing could address the inherent limitations of conventional silicon technology in dedicated machine learning applications. Recent work on silicon-based asynchronous spiking neural networks and large crossbar arrays of two-terminal memristive devices has led to the development of promising neuromorphic systems. However, delivering a compact and efficient parallel computing technology that is capable of embedding artificial neural networks in hardware remains a significant challenge. Organic electronic materials offer an attractive option for such systems and could provide biocompatible and relatively inexpensive neuromorphic devices with low-energy switching and excellent tunability. Here, we review the development of organic neuromorphic devices. We consider different resistance-switching mechanisms, which typically rely on electrochemical doping or charge trapping, and report approaches that enhance state retention and conductance tuning. We also discuss the challenges the field faces in implementing low-power neuromorphic computing, such as device downscaling and improving device speed. Finally, we highlight early demonstrations of device integration into arrays, and consider future directions and potential applications of this technology.

568 citations

References
More filters
Journal ArticleDOI
01 May 2008-Nature
TL;DR: It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Abstract: Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.

8,971 citations

Journal ArticleDOI
08 Aug 2014-Science
TL;DR: Inspired by the brain’s structure, an efficient, scalable, and flexible non–von Neumann architecture is developed that leverages contemporary silicon technology and is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification.
Abstract: Inspired by the brain’s structure, we have developed an efficient, scalable, and flexible non–von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts.

3,253 citations

Journal ArticleDOI
TL;DR: The performance requirements for computing with memristive devices are examined and how the outstanding challenges could be met are examined.
Abstract: Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on ionic motion, which are built from a simple conductor/insulator/conductor thin-film stack. These devices were originally conceived in the late 1960s and recent progress has led to fast, low-energy, high-endurance devices that can be scaled down to less than 10 nm and stacked in three dimensions. However, the underlying device mechanisms remain unclear, which is a significant barrier to their widespread application. Here, we review recent progress in the development and understanding of memristive devices. We also examine the performance requirements for computing with memristive devices and detail how the outstanding challenges could be met.

3,037 citations

Journal ArticleDOI
07 May 2015-Nature
TL;DR: The experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification).
Abstract: Despite much progress in semiconductor integrated circuit technology, the extreme complexity of the human cerebral cortex, with its approximately 10(14) synapses, makes the hardware implementation of neuromorphic networks with a comparable number of devices exceptionally challenging. To provide comparable complexity while operating much faster and with manageable power dissipation, networks based on circuits combining complementary metal-oxide-semiconductors (CMOSs) and adjustable two-terminal resistive devices (memristors) have been developed. In such circuits, the usual CMOS stack is augmented with one or several crossbar layers, with memristors at each crosspoint. There have recently been notable improvements in the fabrication of such memristive crossbars and their integration with CMOS circuits, including first demonstrations of their vertical integration. Separately, discrete memristors have been used as artificial synapses in neuromorphic networks. Very recently, such experiments have been extended to crossbar arrays of phase-change memristive devices. The adjustment of such devices, however, requires an additional transistor at each crosspoint, and hence these devices are much harder to scale than metal-oxide memristors, whose nonlinear current-voltage curves enable transistor-free operation. Here we report the experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification). The network can be taught in situ using a coarse-grain variety of the delta rule algorithm to perform the perfect classification of 3 × 3-pixel black/white images into three classes (representing letters). This demonstration is an important step towards much larger and more complex memristive neuromorphic networks.

2,222 citations

Journal ArticleDOI
20 Apr 2010
TL;DR: The physics behind this large resistivity contrast between the amorphous and crystalline states in phase change materials is presented and how it is being exploited to create high density PCM is described.
Abstract: In this paper, recent progress of phase change memory (PCM) is reviewed. The electrical and thermal properties of phase change materials are surveyed with a focus on the scalability of the materials and their impact on device design. Innovations in the device structure, memory cell selector, and strategies for achieving multibit operation and 3-D, multilayer high-density memory arrays are described. The scaling properties of PCM are illustrated with recent experimental results using special device test structures and novel material synthesis. Factors affecting the reliability of PCM are discussed.

1,488 citations

Related Papers (5)