scispace - formally typeset
Search or ask a question
Journal ArticleDOI

LIBSVM: A library for support vector machines

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Abstract: LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
10 Aug 2015
TL;DR: A unified framework to learn latent representations of sub-structures for graphs, inspired by latest advancements in language modeling and deep learning, which achieves significant improvements in classification accuracy over state-of-the-art graph kernels.
Abstract: In this paper, we present Deep Graph Kernels, a unified framework to learn latent representations of sub-structures for graphs, inspired by latest advancements in language modeling and deep learning. Our framework leverages the dependency information between sub-structures by learning their latent representations. We demonstrate instances of our framework on three popular graph kernels, namely Graphlet kernels, Weisfeiler-Lehman subtree kernels, and Shortest-Path graph kernels. Our experiments on several benchmark datasets show that Deep Graph Kernels achieve significant improvements in classification accuracy over state-of-the-art graph kernels.

1,074 citations


Cites methods from "LIBSVM: A library for support vecto..."

  • ...Moreover, we use 10-fold cross validation with a binary C-SVM [5] to test classification performance....

    [...]

Posted Content
TL;DR: DiffPool is proposed, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion.
Abstract: Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

1,070 citations


Cites methods from "LIBSVM: A library for support vecto..."

  • ...We computed the classification accuracies using the C-SVM implementation of LIBSVM [6], using 10-fold cross validation....

    [...]

Journal ArticleDOI
23 May 2014-Science
TL;DR: In mice, mammary tumor growth induces the accumulation of tumor-associated macrophage that are phenotypically and functionally distinct from mammary tissue macrophages, which reveal the ontogeny of TAMs and a discrete tumor-elicited inflammatory response, which may provide new opportunities for cancer immunotherapy.
Abstract: Long recognized as an evolutionarily ancient cell type involved in tissue homeostasis and immune defense against pathogens, macrophages are being rediscovered as regulators of several diseases, including cancer. Here we show that in mice, mammary tumor growth induces the accumulation of tumor-associated macrophages (TAMs) that are phenotypically and functionally distinct from mammary tissue macrophages (MTMs). TAMs express the adhesion molecule Vcam1 and proliferate upon their differentiation from inflammatory monocytes, but do not exhibit an "alternatively activated" phenotype. TAM terminal differentiation depends on the transcriptional regulator of Notch signaling, RBPJ; and TAM, but not MTM, depletion restores tumor-infiltrating cytotoxic T cell responses and suppresses tumor growth. These findings reveal the ontogeny of TAMs and a discrete tumor-elicited inflammatory response, which may provide new opportunities for cancer immunotherapy.

1,053 citations

Book ChapterDOI
01 Jan 2006
TL;DR: This article investigates the performance of combining support vector machines (SVM) and various feature selection strategies, some are filter-type approaches: general feature selection methods independent of SVM, and some are wrapper-type methods: modifications of S VM which can be used to select features.
Abstract: This article investigates the performance of combining support vector machines (SVM) and various feature selection strategies. Some of them are filter-type approaches: general feature selection methods independent of SVM, and some are wrapper-type methods: modifications of SVM which can be used to select features. We apply these strategies while participating to the NIPS 2003 Feature Selection Challenge and rank third as a group.

1,030 citations

Journal ArticleDOI
TL;DR: This paper explores the nature of open set recognition and formalizes its definition as a constrained minimization problem, and introduces a novel “1-vs-set machine,” which sculpts a decision space from the marginal distances of a 1-class or binary SVM with a linear kernel.
Abstract: To date, almost all experimental evaluations of machine learning-based recognition algorithms in computer vision have taken the form of “closed set” recognition, whereby all testing classes are known at training time. A more realistic scenario for vision applications is “open set” recognition, where incomplete knowledge of the world is present at training time, and unknown classes can be submitted to an algorithm during testing. This paper explores the nature of open set recognition and formalizes its definition as a constrained minimization problem. The open set recognition problem is not well addressed by existing algorithms because it requires strong generalization. As a step toward a solution, we introduce a novel “1-vs-set machine,” which sculpts a decision space from the marginal distances of a 1-class or binary SVM with a linear kernel. This methodology applies to several different applications in computer vision where open set recognition is a challenging problem, including object recognition and face verification. We consider both in this work, with large scale cross-dataset experiments performed over the Caltech 256 and ImageNet sets, as well as face matching experiments performed over the Labeled Faces in the Wild set. The experiments highlight the effectiveness of machines adapted for open set evaluation compared to existing 1-class and binary SVMs for the same tasks.

1,029 citations

References
More filters
Journal ArticleDOI
TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Abstract: The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data. High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

37,861 citations


"LIBSVM: A library for support vecto..." refers background in this paper

  • ...{1,-1}, C-SVC [Boser et al. 1992; Cortes and Vapnik 1995] solves 4LIBSVM Tools: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools. the following primal optimization problem: l t min 1 w T w +C .i (1) w,b,. 2 i=1 subject to yi(w T f(xi) +b) =1 -.i, .i =0,i =1,...,l, where f(xi)maps xi into a…...

    [...]

01 Jan 1998
TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Abstract: A comprehensive look at learning and generalization theory. The statistical theory of learning and generalization concerns the problem of choosing desired functions on the basis of empirical data. Highly applicable to a variety of computer science and robotics fields, this book offers lucid coverage of the theory as a whole. Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.

26,531 citations


"LIBSVM: A library for support vecto..." refers background in this paper

  • ...Under given parameters C > 0and E> 0, the standard form of support vector regression [Vapnik 1998] is ll tt 1 T min w w + C .i + C .i * w,b,.,. * 2 i=1 i=1 subject to w T f(xi) + b- zi = E + .i, zi - w T f(xi) - b = E + .i * , * .i,.i = 0,i = 1,...,l....

    [...]

  • ...It can be clearly seen that C-SVC and one-class SVM are already in the form of problem (11)....

    [...]

  • ..., l, in two classes, and a vector y ∈ Rl such that yi ∈ {1,−1}, C-SVC (Cortes and Vapnik, 1995; Vapnik, 1998) solves the following primal problem:...

    [...]

  • ...Then, according to the SVM formulation, svm train one calls a corresponding subroutine such as solve c svc for C-SVC and solve nu svc for ....

    [...]

  • ...Note that b of C-SVC and E-SVR plays the same role as -. in one-class SVM, so we de.ne ....

    [...]

Proceedings ArticleDOI
01 Jul 1992
TL;DR: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented, applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions.
Abstract: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leave-one-out method and the VC-dimension are given. Experimental results on optical character recognition problems demonstrate the good generalization obtained when compared with other learning algorithms.

11,211 citations


"LIBSVM: A library for support vecto..." refers background in this paper

  • ...It can be clearly seen that C-SVC and one-class SVM are already in the form of problem (11)....

    [...]

  • ...Then, according to the SVM formulation, svm train one calls a corresponding subroutine such as solve c svc for C-SVC and solve nu svc for ....

    [...]

  • ...Note that b of C-SVC and E-SVR plays the same role as -. in one-class SVM, so we de.ne ....

    [...]

  • ...In Section 2, we describe SVM formulations sup­ported in LIBSVM: C-Support Vector Classi.cation (C-SVC), ....

    [...]

  • ...{1,-1}, C-SVC [Boser et al. 1992; Cortes and Vapnik 1995] solves 4LIBSVM Tools: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools. the following primal optimization problem: l t min 1 w T w +C .i (1) w,b,. 2 i=1 subject to yi(w T f(xi) +b) =1 -.i, .i =0,i =1,...,l, where f(xi)maps xi into a higher-dimensional space and C > 0 is the regularization parameter....

    [...]

01 Jan 2008
TL;DR: A simple procedure is proposed, which usually gives reasonable results and is suitable for beginners who are not familiar with SVM.
Abstract: Support vector machine (SVM) is a popular technique for classication. However, beginners who are not familiar with SVM often get unsatisfactory results since they miss some easy but signicant steps. In this guide, we propose a simple procedure, which usually gives reasonable results.

7,069 citations


"LIBSVM: A library for support vecto..." refers methods in this paper

  • ...A Simple Example of Running LIBSVM While detailed instructions of using LIBSVM are available in the README file of the package and the practical guide by Hsu et al. [2003], here we give a simple example....

    [...]

  • ...For instructions of using LIBSVM, see the README file included in the package, the LIBSVM FAQ,3 and the practical guide by Hsu et al. [2003]. LIBSVM supports the following learning tasks....

    [...]

Journal ArticleDOI
TL;DR: Decomposition implementations for two "all-together" multiclass SVM methods are given and it is shown that for large problems methods by considering all data at once in general need fewer support vectors.
Abstract: Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computationally more expensive to solve multiclass problems, comparisons of these methods using large-scale problems have not been seriously conducted. Especially for methods solving multiclass SVM in one step, a much larger optimization problem is required so up to now experiments are limited to small data sets. In this paper we give decomposition implementations for two such "all-together" methods. We then compare their performance with three methods based on binary classifications: "one-against-all," "one-against-one," and directed acyclic graph SVM (DAGSVM). Our experiments indicate that the "one-against-one" and DAG methods are more suitable for practical use than the other methods. Results also show that for large problems methods by considering all data at once in general need fewer support vectors.

6,562 citations