scispace - formally typeset
Search or ask a question
Journal ArticleDOI

LIBSVM: A library for support vector machines

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Abstract: LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Calculated inter-cluster distances in the feature spaces can choose proper kernel parameters with which the testing accuracy of trained SVMs is competitive to the standard ones, and the training time can be significantly shortened.

206 citations

Proceedings ArticleDOI
12 Aug 2012
TL;DR: This work considers the problem of predicting instance labels while learning from data labeled only at the bag level, and proposes Rank-Loss Support Instance Machines, which optimize a regularized rank-loss objective and can be instantiated with different aggregation models connecting instance- level predictions with bag-level predictions.
Abstract: Multi-instance multi-label learning (MIML) is a framework for supervised classification where the objects to be classified are bags of instances associated with multiple labels. For example, an image can be represented as a bag of segments and associated with a list of objects it contains. Prior work on MIML has focused on predicting label sets for previously unseen bags. We instead consider the problem of predicting instance labels while learning from data labeled only at the bag level. We propose Rank-Loss Support Instance Machines, which optimize a regularized rank-loss objective and can be instantiated with different aggregation models connecting instance-level predictions with bag-level predictions. The aggregation models that we consider are equivalent to defining a "support instance" for each bag, which allows efficient optimization of the rank-loss objective using primal sub-gradient descent. Experiments on artificial and real-world datasets show that the proposed methods achieve higher accuracy than other loss functions used in prior work, e.g., Hamming loss, and recent work in ambiguous label classification.

206 citations


Cites methods from "LIBSVM: A library for support vecto..."

  • ...LIBSVM: a library for support vector machines, 2001....

    [...]

  • ...Note that LIBSVM uses one linear model for each pair of classes rather than one for each class....

    [...]

  • ...For this experiment, we use LIBSVM [4] with a linear kernel....

    [...]

  • ...For this experiment, we use LIBSVM [4] with a linear kernel....

    [...]

Journal ArticleDOI
TL;DR: Experimental results obtained reveal that the proposed evolving LSSVM can produce some forecasting models that are easier to be interpreted by using a small number of predictive features and are more efficient than other parameter optimization methods.
Abstract: In this paper, an evolving least squares support vector machine (LSSVM) learning paradigm with a mixed kernel is proposed to explore stock market trends. In the proposed learning paradigm, a genetic algorithm (GA), one of the most popular evolutionary algorithms (EAs), is first used to select input features for LSSVM learning, i.e., evolution of input features. Then, another GA is used for parameters optimization of LSSVM, i.e., evolution of algorithmic parameters. Finally, the evolving LSSVM learning paradigm with best feature subset, optimal parameters, and a mixed kernel is used to predict stock market movement direction in terms of historical data series. For illustration and evaluation purposes, three important stock indices, S&P 500 Index, Dow Jones Industrial Average (DJIA) Index, and New York Stock Exchange (NYSE) Index, are used as testing targets. Experimental results obtained reveal that the proposed evolving LSSVM can produce some forecasting models that are easier to be interpreted by using a small number of predictive features and are more efficient than other parameter optimization methods. Furthermore, the produced forecasting model can significantly outperform other forecasting models listed in this paper in terms of the hit ratio. These findings imply that the proposed evolving LSSVM learning paradigm can be used as a promising approach to stock market tendency exploration.

206 citations


Cites methods from "LIBSVM: A library for support vecto..."

  • ...Furthermore, the evolving LSSVM model with important input features has better generalization performance than individual SVM model....

    [...]

Journal ArticleDOI
01 Jan 2007
TL;DR: A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed, and a category-specific statistical similarity matching is proposed in a finer level on the prefiltered images.
Abstract: A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework

205 citations

Journal ArticleDOI
TL;DR: This work demonstrates that the DMs based on an ensemble (consensus) model provide systematically better performance than other DMs and can be used to halve the cost of experimental measurements by providing a similar prediction accuracy.
Abstract: The estimation of accuracy and applicability of QSAR and QSPR models for biological and physicochemical properties represents a critical problem. The developed parameter of “distance to model” (DM) is defined as a metric of similarity between the training and test set compounds that have been subjected to QSAR/QSPR modeling. In our previous work, we demonstrated the utility and optimal performance of DM metrics that have been based on the standard deviation within an ensemble of QSAR models. The current study applies such analysis to 30 QSAR models for the Ames mutagenicity data set that were previously reported within the 2009 QSAR challenge. We demonstrate that the DMs based on an ensemble (consensus) model provide systematically better performance than other DMs. The presented approach identifies 30−60% of compounds having an accuracy of prediction similar to the interlaboratory accuracy of the Ames test, which is estimated to be 90%. Thus, the in silico predictions can be used to halve the cost of exp...

205 citations

References
More filters
Journal ArticleDOI
TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Abstract: The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data. High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

37,861 citations


"LIBSVM: A library for support vecto..." refers background in this paper

  • ...{1,-1}, C-SVC [Boser et al. 1992; Cortes and Vapnik 1995] solves 4LIBSVM Tools: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools. the following primal optimization problem: l t min 1 w T w +C .i (1) w,b,. 2 i=1 subject to yi(w T f(xi) +b) =1 -.i, .i =0,i =1,...,l, where f(xi)maps xi into a…...

    [...]

01 Jan 1998
TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Abstract: A comprehensive look at learning and generalization theory. The statistical theory of learning and generalization concerns the problem of choosing desired functions on the basis of empirical data. Highly applicable to a variety of computer science and robotics fields, this book offers lucid coverage of the theory as a whole. Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.

26,531 citations


"LIBSVM: A library for support vecto..." refers background in this paper

  • ...Under given parameters C > 0and E> 0, the standard form of support vector regression [Vapnik 1998] is ll tt 1 T min w w + C .i + C .i * w,b,.,. * 2 i=1 i=1 subject to w T f(xi) + b- zi = E + .i, zi - w T f(xi) - b = E + .i * , * .i,.i = 0,i = 1,...,l....

    [...]

  • ...It can be clearly seen that C-SVC and one-class SVM are already in the form of problem (11)....

    [...]

  • ..., l, in two classes, and a vector y ∈ Rl such that yi ∈ {1,−1}, C-SVC (Cortes and Vapnik, 1995; Vapnik, 1998) solves the following primal problem:...

    [...]

  • ...Then, according to the SVM formulation, svm train one calls a corresponding subroutine such as solve c svc for C-SVC and solve nu svc for ....

    [...]

  • ...Note that b of C-SVC and E-SVR plays the same role as -. in one-class SVM, so we de.ne ....

    [...]

Proceedings ArticleDOI
01 Jul 1992
TL;DR: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented, applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions.
Abstract: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leave-one-out method and the VC-dimension are given. Experimental results on optical character recognition problems demonstrate the good generalization obtained when compared with other learning algorithms.

11,211 citations


"LIBSVM: A library for support vecto..." refers background in this paper

  • ...It can be clearly seen that C-SVC and one-class SVM are already in the form of problem (11)....

    [...]

  • ...Then, according to the SVM formulation, svm train one calls a corresponding subroutine such as solve c svc for C-SVC and solve nu svc for ....

    [...]

  • ...Note that b of C-SVC and E-SVR plays the same role as -. in one-class SVM, so we de.ne ....

    [...]

  • ...In Section 2, we describe SVM formulations sup­ported in LIBSVM: C-Support Vector Classi.cation (C-SVC), ....

    [...]

  • ...{1,-1}, C-SVC [Boser et al. 1992; Cortes and Vapnik 1995] solves 4LIBSVM Tools: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools. the following primal optimization problem: l t min 1 w T w +C .i (1) w,b,. 2 i=1 subject to yi(w T f(xi) +b) =1 -.i, .i =0,i =1,...,l, where f(xi)maps xi into a higher-dimensional space and C > 0 is the regularization parameter....

    [...]

01 Jan 2008
TL;DR: A simple procedure is proposed, which usually gives reasonable results and is suitable for beginners who are not familiar with SVM.
Abstract: Support vector machine (SVM) is a popular technique for classication. However, beginners who are not familiar with SVM often get unsatisfactory results since they miss some easy but signicant steps. In this guide, we propose a simple procedure, which usually gives reasonable results.

7,069 citations


"LIBSVM: A library for support vecto..." refers methods in this paper

  • ...A Simple Example of Running LIBSVM While detailed instructions of using LIBSVM are available in the README file of the package and the practical guide by Hsu et al. [2003], here we give a simple example....

    [...]

  • ...For instructions of using LIBSVM, see the README file included in the package, the LIBSVM FAQ,3 and the practical guide by Hsu et al. [2003]. LIBSVM supports the following learning tasks....

    [...]

Journal ArticleDOI
TL;DR: Decomposition implementations for two "all-together" multiclass SVM methods are given and it is shown that for large problems methods by considering all data at once in general need fewer support vectors.
Abstract: Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computationally more expensive to solve multiclass problems, comparisons of these methods using large-scale problems have not been seriously conducted. Especially for methods solving multiclass SVM in one step, a much larger optimization problem is required so up to now experiments are limited to small data sets. In this paper we give decomposition implementations for two such "all-together" methods. We then compare their performance with three methods based on binary classifications: "one-against-all," "one-against-one," and directed acyclic graph SVM (DAGSVM). Our experiments indicate that the "one-against-one" and DAG methods are more suitable for practical use than the other methods. Results also show that for large problems methods by considering all data at once in general need fewer support vectors.

6,562 citations