scispace - formally typeset
Search or ask a question
Journal ArticleDOI

LIBSVM: A library for support vector machines

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Abstract: LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

Content maybe subject to copyright    Report

Citations
More filters
Reference BookDOI
01 Jan 2011
TL;DR: In this article, the Mumford and Shah Model and its applications in total variation image restoration are discussed. But the authors focus on the reconstruction of 3D information, rather than the analysis of the image.
Abstract: Linear Inverse Problems.- Large-Scale Inverse Problems in Imaging.- Regularization Methods for Ill-Posed Problems.- Distance Measures and Applications to Multi-Modal Variational Imaging.- Energy Minimization Methods.- Compressive Sensing.- Duality and Convex Programming.- EM Algorithms.- Iterative Solution Methods.- Level Set Methods for Structural Inversion and Image Reconstructions.- Expansion Methods.- Sampling Methods.- Inverse Scattering.- Electrical Impedance Tomography.- Synthetic Aperture Radar Imaging.- Tomography.- Optical Imaging.- Photoacoustic and Thermoacoustic Tomography: Image Formation Principles.- Mathematics of Photoacoustic and Thermoacoustic Tomography.- Wave Phenomena.- Statistical Methods in Imaging.- Supervised Learning by Support Vector Machines.- Total Variation in Imaging.- Numerical Methods and Applications in Total Variation Image Restoration.- Mumford and Shah Model and its Applications in Total Variation Image Restoration.- Local Smoothing Neighbourhood Filters.- Neighbourhood Filters and the Recovery of 3D Information.- Splines and Multiresolution Analysis.- Gabor Analysis for Imaging.- Shaper Spaces.- Variational Methods in Shape Analysis.- Manifold Intrinsic Similarity.- Image Segmentation with Shape Priors: Explicit Versus Implicit Representations.- Starlet Transform in Astronomical Data Processing.- Differential Methods for Multi-Dimensional Visual Data Analysis.- Wave fronts in Imaging, Quinto.- Ultrasound Tomography, Natterer.- Optical Flow, Schnoerr.- Morphology, Petros.- Maragos.- PDEs, Weickert. - Registration, Modersitzki. - Discrete Geometry in Imaging, Bobenko, Pottmann.-Visualization, Hege.- Fast Marching and Level Sets, Osher.- Couple Physics Imaging, Arridge.- Imaging in Random Media, Borcea.- Conformal Methods, Gu.- Texture, Peyre.- Graph Cuts, Darbon.- Imaging in Physics with Fourier Transform (i.e. Phase Retrieval e.g Dark field imaging), J. R. Fienup.- Electron Microscopy, Oktem Ozan.- Mathematical Imaging OCT (this is also FFT based), Mark E. Brezinski.- Spect, PET, Faukas, Louis.

341 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive review of the methods that have been proposed for music emotion recognition and concludes with suggestions for further research.
Abstract: The proliferation of MP3 players and the exploding amount of digital music content call for novel ways of music organization and retrieval to meet the ever-increasing demand for easy and effective information access. As almost every music piece is created to convey emotion, music organization and retrieval by emotion is a reasonable way of accessing music information. A good deal of effort has been made in the music information retrieval community to train a machine to automatically recognize the emotion of a music signal. A central issue of machine recognition of music emotion is the conceptualization of emotion and the associated emotion taxonomy. Different viewpoints on this issue have led to the proposal of different ways of emotion annotation, model training, and result visualization. This article provides a comprehensive review of the methods that have been proposed for music emotion recognition. Moreover, as music emotion recognition is still in its infancy, there are many open issues. We review the solutions that have been proposed to address these issues and conclude with suggestions for further research.

340 citations

Journal ArticleDOI
01 Dec 2015
TL;DR: A novel Class A classifier general enough to thwart overfitting, lightweight thanks to the usage of the less costly features, and still able to correctly classify more than 95% of the accounts of the original training set.
Abstract: Fake followers are those Twitter accounts specifically created to inflate the number of followers of a target account. Fake followers are dangerous for the social platform and beyond, since they may alter concepts like popularity and influence in the Twittersphere-hence impacting on economy, politics, and society. In this paper, we contribute along different dimensions. First, we review some of the most relevant existing features and rules (proposed by Academia and Media) for anomalous Twitter accounts detection. Second, we create a baseline dataset of verified human and fake follower accounts. Such baseline dataset is publicly available to the scientific community. Then, we exploit the baseline dataset to train a set of machine-learning classifiers built over the reviewed rules and features. Our results show that most of the rules proposed by Media provide unsatisfactory performance in revealing fake followers, while features proposed in the past by Academia for spam detection provide good results. Building on the most promising features, we revise the classifiers both in terms of reduction of overfitting and cost for gathering the data needed to compute the features. The final result is a novel Class A classifier, general enough to thwart overfitting, lightweight thanks to the usage of the less costly features, and still able to correctly classify more than 95% of the accounts of the original training set. We ultimately perform an information fusion-based sensitivity analysis, to assess the global sensitivity of each of the features employed by the classifier.The findings reported in this paper, other than being supported by a thorough experimental methodology and interesting on their own, also pave the way for further investigation on the novel issue of fake Twitter followers.

340 citations

Journal ArticleDOI
TL;DR: This study shows that automatic analysis and detection of EEG changes is possible by SVM and SVM is a good candidate for developing pre-emptive automatic drowsiness detection systems for driving safety.

339 citations

Journal ArticleDOI
TL;DR: This study proposes a novel approach, known as genetic algorithm (GA)-SVR, which searches for SVR's optimal parameters using real value GAs, and then adopts the optimal parameters to construct the SVR models.

339 citations

References
More filters
Journal ArticleDOI
TL;DR: High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated and the performance of the support- vector network is compared to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.
Abstract: The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data. High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

37,861 citations


"LIBSVM: A library for support vecto..." refers background in this paper

  • ...{1,-1}, C-SVC [Boser et al. 1992; Cortes and Vapnik 1995] solves 4LIBSVM Tools: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools. the following primal optimization problem: l t min 1 w T w +C .i (1) w,b,. 2 i=1 subject to yi(w T f(xi) +b) =1 -.i, .i =0,i =1,...,l, where f(xi)maps xi into a…...

    [...]

01 Jan 1998
TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Abstract: A comprehensive look at learning and generalization theory. The statistical theory of learning and generalization concerns the problem of choosing desired functions on the basis of empirical data. Highly applicable to a variety of computer science and robotics fields, this book offers lucid coverage of the theory as a whole. Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.

26,531 citations


"LIBSVM: A library for support vecto..." refers background in this paper

  • ...Under given parameters C > 0and E> 0, the standard form of support vector regression [Vapnik 1998] is ll tt 1 T min w w + C .i + C .i * w,b,.,. * 2 i=1 i=1 subject to w T f(xi) + b- zi = E + .i, zi - w T f(xi) - b = E + .i * , * .i,.i = 0,i = 1,...,l....

    [...]

  • ...It can be clearly seen that C-SVC and one-class SVM are already in the form of problem (11)....

    [...]

  • ..., l, in two classes, and a vector y ∈ Rl such that yi ∈ {1,−1}, C-SVC (Cortes and Vapnik, 1995; Vapnik, 1998) solves the following primal problem:...

    [...]

  • ...Then, according to the SVM formulation, svm train one calls a corresponding subroutine such as solve c svc for C-SVC and solve nu svc for ....

    [...]

  • ...Note that b of C-SVC and E-SVR plays the same role as -. in one-class SVM, so we de.ne ....

    [...]

Proceedings ArticleDOI
01 Jul 1992
TL;DR: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented, applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions.
Abstract: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leave-one-out method and the VC-dimension are given. Experimental results on optical character recognition problems demonstrate the good generalization obtained when compared with other learning algorithms.

11,211 citations


"LIBSVM: A library for support vecto..." refers background in this paper

  • ...It can be clearly seen that C-SVC and one-class SVM are already in the form of problem (11)....

    [...]

  • ...Then, according to the SVM formulation, svm train one calls a corresponding subroutine such as solve c svc for C-SVC and solve nu svc for ....

    [...]

  • ...Note that b of C-SVC and E-SVR plays the same role as -. in one-class SVM, so we de.ne ....

    [...]

  • ...In Section 2, we describe SVM formulations sup­ported in LIBSVM: C-Support Vector Classi.cation (C-SVC), ....

    [...]

  • ...{1,-1}, C-SVC [Boser et al. 1992; Cortes and Vapnik 1995] solves 4LIBSVM Tools: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools. the following primal optimization problem: l t min 1 w T w +C .i (1) w,b,. 2 i=1 subject to yi(w T f(xi) +b) =1 -.i, .i =0,i =1,...,l, where f(xi)maps xi into a higher-dimensional space and C > 0 is the regularization parameter....

    [...]

01 Jan 2008
TL;DR: A simple procedure is proposed, which usually gives reasonable results and is suitable for beginners who are not familiar with SVM.
Abstract: Support vector machine (SVM) is a popular technique for classication. However, beginners who are not familiar with SVM often get unsatisfactory results since they miss some easy but signicant steps. In this guide, we propose a simple procedure, which usually gives reasonable results.

7,069 citations


"LIBSVM: A library for support vecto..." refers methods in this paper

  • ...A Simple Example of Running LIBSVM While detailed instructions of using LIBSVM are available in the README file of the package and the practical guide by Hsu et al. [2003], here we give a simple example....

    [...]

  • ...For instructions of using LIBSVM, see the README file included in the package, the LIBSVM FAQ,3 and the practical guide by Hsu et al. [2003]. LIBSVM supports the following learning tasks....

    [...]

Journal ArticleDOI
TL;DR: Decomposition implementations for two "all-together" multiclass SVM methods are given and it is shown that for large problems methods by considering all data at once in general need fewer support vectors.
Abstract: Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computationally more expensive to solve multiclass problems, comparisons of these methods using large-scale problems have not been seriously conducted. Especially for methods solving multiclass SVM in one step, a much larger optimization problem is required so up to now experiments are limited to small data sets. In this paper we give decomposition implementations for two such "all-together" methods. We then compare their performance with three methods based on binary classifications: "one-against-all," "one-against-one," and directed acyclic graph SVM (DAGSVM). Our experiments indicate that the "one-against-one" and DAG methods are more suitable for practical use than the other methods. Results also show that for large problems methods by considering all data at once in general need fewer support vectors.

6,562 citations