scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Life cycle water use for electricity generation: a review and harmonization of literature estimates

TL;DR: In this article, the authors provided estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning.
Abstract: This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.
Citations
More filters
Journal ArticleDOI
22 Sep 2020
TL;DR: In this article, a review of the available solutions that can be implemented within the next decade and beyond to reduce greenhouse gas emissions from cement and concrete production is presented, which reveals credible pathways for sustainable concrete use that balance societal needs, environmental requirements and technical feasibility.
Abstract: The use of cement and concrete, among the most widely used man-made materials, is under scrutiny. Owing to their large-scale use, production of cement and concrete results in substantial emission of greenhouse gases and places strain on the availability of natural resources, such as water. Projected urbanization over the next 50–100 years therefore indicates that the demand for cement and concrete will continue to increase, necessitating strategies to limit their environmental impact. In this Review, we shed light on the available solutions that can be implemented within the next decade and beyond to reduce greenhouse gas emissions from cement and concrete production. As the construction sector has proven to be very slow-moving and risk-averse, we focus on minor improvements that can be achieved across the value chain, such as the use of supplementary cementitious materials and optimizing the clinker content of cement. Critically, the combined effect of these marginal gains can have an important impact on reducing greenhouse gas emissions by up to 50% if all stakeholders are engaged. In doing so, we reveal credible pathways for sustainable concrete use that balance societal needs, environmental requirements and technical feasibility. Concrete is one of the most widely used man-made materials and is critical for the ongoing urbanization of the global population. However, owing to its widespread use, concrete can have a negative impact on the environment. This Review provides medium-term and long-term solutions to address the environmental concerns surrounding concrete production.

354 citations

01 Jan 2014
TL;DR: The report summarizes the science of climate change and the impacts in the United States, now and in the future as discussed by the authors, and concludes that climate change is a major threat to the US.
Abstract: The report summarizes the science of climate change and the impacts of climate change in the United States, now and in the future.

332 citations


Cites background from "Life cycle water use for electricit..."

  • ...Although small in relation to cooling water needs, water consumption also occurs throughout the fuel and power cycle.(19) (Figure source: Averyt et al....

    [...]

Journal ArticleDOI
TL;DR: The environmental impacts of several commercial and emerging solar energy systems at both small- and utility-scales are discussed, alongside with some technically and ecologically favorable recommendations for mitigating the impacts.

312 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the competing fresh groundwater needs for human consumption, food production, energy, and the environment, as well as physical hazards, and conflicts due to transboundary overexploitation.
Abstract: With rivers in critical regions already exploited to capacity throughout the world and groundwater overdraft as well as large-scale contamination occurring in many areas, we have entered an era in which multiple simultaneous stresses will drive water management. Increasingly, groundwater resources are taking a more prominent role in providing freshwater supplies. We discuss the competing fresh groundwater needs for human consumption, food production, energy, and the environment, as well as physical hazards, and conflicts due to transboundary overexploitation. During the past 50 years, groundwater management modeling has focused on combining simulation with optimization methods to inspect important problems ranging from contaminant remediation to agricultural irrigation management. The compound challenges now faced by water planners require a new generation of aquifer management models that address the broad impacts of global change on aquifer storage and depletion trajectory management, land subsidence, groundwater-dependent ecosystems, seawater intrusion, anthropogenic and geogenic contamination, supply vulnerability, and long-term sustainability. The scope of research efforts is only beginning to address complex interactions using multiagent system models that are not readily formulated as optimization problems and that consider a suite of human behavioral responses.

262 citations

Journal ArticleDOI
TL;DR: Despite near-to medium-term cost barriers, a future U.S. electricity system in which wind plays a major role is technically feasible and could result in enduring benefits globally, nationally, and locally as discussed by the authors.

250 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States, and provided the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.
Abstract: This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The water factors presented may be useful in modeling and policy analyses where reliable power plant level data are not available. Major findings of the report include: water withdrawal and consumption factors vary greatly across and within fuel technologies, and water factors show greater agreement when organized according to cooling technologies as opposed to fuel technologies; a transition to a less carbon-intensive electricity sector could result in either an increase or a decrease in water use, depending on the choice of technologies and cooling systems employed; concentrating solar power technologies and coal facilities with carbon capture and sequestration capabilities have the highest water consumption values when using a recirculating cooling system; and non-thermal renewables, such as photovoltaics and wind, have the lowest water consumption factors. Improved power plant data and further studies into the water requirements of energy technologies in different climatic regions would facilitate greater resolution in analyses of water impacts of future energy and economic scenarios. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.

525 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assess the water footprint of different primary energy carriers derived from biomass expressed as the amount of water consumed to produce a unit of energy (m3/GJ).

418 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed previous studies of water use in electricity generation and used full-life cycle accounting to evaluate water demand factors, both withdrawal and consumption, for conventional-and renewable-electrical power plants.
Abstract: Water use by the electric power industry is attracting renewed interest as periods and zones of arid weather are increasingly encountered, and various regional energy-production scenarios are evaluated. However, there is a scarcity of data on upstream water factors and discrepancies of data from different sources. We reviewed previous studies of water use in electricity generation and used full-life cycle accounting to evaluate water demand factors, both withdrawal and consumption, for conventional- and renewable-electrical power plants. Our investigation showed that moving to technologies like photovoltaics and wind offers the best option for conserving our water supply. We also emphasize the importance of employing a transparent, balanced approach in accounting life-cycle water usages.

330 citations