scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Life history and resource acquisition: Photosynthetic traits in selected accessions of three perennial cereal species compared with annual wheat and rye

01 Dec 2013-American Journal of Botany (John Wiley & Sons, Ltd)-Vol. 100, Iss: 12, pp 2468-2477
TL;DR: It is demonstrated that some perennial cereal species can maintain higher midseason A than their annual crop relatives, and evidence for age-related changes in photosynthetic physiology in a herbaceous perennial plant is found.
Abstract:  Premise of the study: Few previous studies have considered how plant age affects photosynthetic physiology in herbaceous perennials or how photosynthetic capacity in annual cereals compares to perennial relatives. Newly developed perennial cereals offer novel systems for addressing these questions. Our study makes a novel contribution by considering how life history differences affect photosynthetic physiology.  Methods: In two linked fi eld studies, we evaluated effects of life history and plant age on photosynthetic rates ( A ), and related biochemical, morphological, and water-relations traits, comparing 1- and 2-yr-old cohorts of perennial wheat, intermediate wheatgrass, and perennial rye to close annual relatives (wheat and rye).  Key results: Photosynthetic rates ( A ) were 10–50% higher in perennial cereals compared to annuals. In wheatgrass, elevated A was associated with higher carboxylation ( V C ), triose phosphate utilization (TPU) and electron transport rates ( J ), and higher leaf soluble protein and chlorophyll. Younger wheatgrass plants maintained higher A , TPU , J , and V C than older plants did. Perennial wheat and rye differed from annual relatives in some but not all of these parameters. Differences in stomatal limitation were not involved, while differences in stomatal conductance ( g s ) became evident under drier conditions.  Conclusions: This study demonstrates that some perennial cereal species can maintain higher midseason A than their annual crop relatives. These changes are not fully explainable by increased access to soil water and may refl ect trade-offs between allocation to reproduction and to resource acquisition. We also found evidence for age-related changes in photosynthetic physiology in a herbaceous perennial plant.
Citations
More filters
Journal ArticleDOI
TL;DR: A cassava leaf metabolic model was developed to quantify the value of overcoming limitations to leaf photosynthesis, pinpointing important overlooked breeding targets for improved photosynthetic efficiency in cassava.
Abstract: Sub‐Saharan Africa is projected to see a 55% increase in food demand by 2035, where cassava (Manihot esculenta) is the most planted crop and a major calorie source. Cassava yield has not increased significantly for 13 years. Improvement of genetic yield potential, the basis of the first Green Revolution, could be increased by improving photosynthetic efficiency. First, the factors limiting photosynthesis and their genetic variability within extant germplasm must be understood. Biochemical and diffusive limitations to leaf photosynthetic CO2 uptake under steady‐state and fluctuating light in thirteen farm‐preferred and high‐yielding African cultivars were analyzed. A cassava leaf metabolic model was developed to quantify the value of overcoming limitations to leaf photosynthesis. At steady‐state, in vivo Rubisco activity and mesophyll conductance accounted for 84% of the limitation whereas under non‐steady‐state conditions of shade to sun transition stomatal conductance was the major limitation contributing resulting in an estimated 13% and 5% losses in CO2 uptake and water use efficiency, across a diurnal period. Triose phosphate utilization, while sufficient to support observed rates, would limit improvement in leaf photosynthesis to 33%, unless improved itself. The variation of carbon assimilation among cultivars were three times greater under non‐steady‐state compared to steady‐state, pinpointing important overlooked breeding targets for improved photosynthetic efficiency in cassava.

83 citations


Cites result from "Life history and resource acquisiti..."

  • ...VTPU values here were similar to those found in a more limited subset of African cassava cultivars (De Souza & Long, 2018), and 25.5– 42% lower than in rice, wheat and rye (Wullschleger, 1993; Jaikumar et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: Perennial grain domestication programs will benefit from population subdivision followed by selection for simple traits in each subpopulation, the evaluation of very large populations, high selection intensity, rapid cycling through generations, and heterosis; the latter may be particularly beneficial in the development of varieties with stable yield and tolerance to crowding.
Abstract: Annual grain crops dominate agricultural landscapes and provide the majority of calories consumed by humanity. Perennial grain crops could potentially ameliorate the land degradation and off-site impacts associated with annual grain cropping. However, herbaceous perennial plants with constitutively high allocation to harvestable seeds are rare to absent in nature. Recent trade-off theory models suggest that rugged fitness landscapes may explain the absence of this form better than sink competition models. Artificial selection for both grain production and multiyear lifespan can lead to more rapid progress in the face of fitness and genetic trade-offs than natural selection but is likely to result in plant types that differ substantially from all current domestic crops. Perennial grain domestication is also likely to require the development of selection strategies that differ from published crop breeding methods, despite their success in improving long-domesticated crops; for this purpose, we have reviewed literature in the areas of population and evolutionary genetics, domestication, and molecular biology. Rapid domestication will likely require genes with large effect that are expected to exhibit strong pleiotropy and epistasis. Cryptic genetic variation will need to be deliberately exposed both to purge mildly deleterious alleles and to generate novel agronomic phenotypes. We predict that perennial grain domestication programs will benefit from population subdivision followed by selection for simple traits in each subpopulation, the evaluation of very large populations, high selection intensity, rapid cycling through generations, and heterosis. The latter may be particularly beneficial in the development of varieties with stable yield and tolerance to crowding.

42 citations

Journal ArticleDOI
TL;DR: The relationship between specific leaf area (SLA) and photosynthesis is not always up-scalable to growth when comparing multiple species with different life cycles as mentioned in this paper, however, the relationship between SLA and photosynthetic performance is often up-to-scaling to growth.
Abstract: Specific leaf area (SLA) is a key trait to screen plants for ecological performance and productivity; however, the relationship between SLA and photosynthesis is not always up-scalable to growth when comparing multiple species with different life cycles. We explored leaf anatomy in annual and perennial species of Physaria, and related it to photosynthesis and water loss. The annual Physaria gracilis had higher SLA, thinner leaves, and lower investment in protective tissues, than perennial P. mendocina. Physaria angustifolia (annual), and P. pinetorum (perennial) showed intermediate values. Both perennials had a thicker palisade and high photosynthesis, relative to annuals. The larger leaf veins of perennials should allow high water availability to the mesophyll. The thicker palisade should determine high resistance to water flow and help explain their high water-use efficiency. These leaf functions reflect the construction of long-lived leaves that efficiently use resources under environmental limitations of arid environments.

28 citations


Cites background from "Life history and resource acquisiti..."

  • ...The first author held a postdoctoral scholarship from CONICET during the time this work was done. co-generic annual and perennial species have been tested together (Ploschuk et al. 2001, Jaikumar et al. 2013)....

    [...]

  • ...Jaikumar et al. (2013) found a higher carbon gain (PNarea) in perennial cereal crops (accessions of perennial wheat, intermediate wheat grass, and perennial rye) compared to close annual relatives (wheat and rye), which was related to a higher leaf soluble protein and chlorophyll content....

    [...]

Journal ArticleDOI
TL;DR: Except for the cultivar TMS 30572, photosynthesis in cassava showed a triose phosphate utilization (TPU) limitation at high intercellular [CO 2], which would not limit photosynthesis rates under current conditions, but without modification would be a barrier to increasing photosynthetic efficiency to levels predicted possible in this crop.
Abstract: Despite the vast importance of cassava (Manihot esculenta Crantz) for smallholder farmers in Africa, yields per unit land area have not increased over the past 55 years. Genetic engineering or breeding for increased photosynthetic efficiency may represent a new approach. This requires the understanding of limitations to photosynthesis within existing germplasm. Here, leaf photosynthetic gas exchange, leaf carbon and nitrogen content, and nonstructural carbohydrates content and growth were analyzed in four high-yielding and farm-preferred African cultivars: two landraces (TME 7, TME 419) and two improved lines (TMS 98/0581 and TMS 30572). Surprisingly, the two landraces had, on average, 18% higher light-saturating leaf CO2 uptake (Asat) than the improved lines due to higher maximum apparent carboxylation rates of Rubisco carboxylation (Vcmax) and regeneration of ribulose-1,5-biphosphate expressed as electron transport rate (Jmax). TME 419 also showed a greater intrinsic water use efficiency. Except for the cultivar TMS 30572, photosynthesis in cassava showed a triose phosphate utilization (TPU) limitation at high intercellular [CO2]. The capacity for TPU in the leaf would not limit photosynthesis rates under current conditions, but without modification would be a barrier to increasing photosynthetic efficiency to levels predicted possible in this crop. The lower capacity of the lines improved through breeding, may perhaps reflect the predominant need, until now, in cassava breeding for improved disease and pest resistance. However, the availability today of equipment for high-throughput screening of photosynthetic capacity provides a means to select for maintenance or improvement of photosynthetic capacity while also selecting for pest and disease resistance. © 2018 The Authors. Food and Energy Security published by John Wiley & Sons Ltd. and the Association of Applied Biologists.

25 citations

Journal ArticleDOI
TL;DR: Evidence of a tradeoff between current and future reproduction is found, responsible for a decrease in yield with age, in selected accessions of Physaria mendocina.

23 citations

References
More filters
Journal ArticleDOI
01 Jun 1980-Planta
TL;DR: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves.
Abstract: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.

7,312 citations

Journal ArticleDOI
22 Apr 2004-Nature
TL;DR: Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.
Abstract: Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

6,360 citations

Journal ArticleDOI
TL;DR: A triangular model based upon the three strategies of evolution in plants may be reconciled with the theory of r- and K-selection, provides an insight into the processes of vegetation succession and dominance, and appears to be capable of extension to fungi and to animals.
Abstract: It is suggested that evolution in plants may be associated with the emergence of three primary strategies, each of which may be identified by reference to a number of characteristics including morphological features, resource allocation, phenology, and response to stress. The competitive strategy prevails in productive, relatively undisturbed vegetation, the stress-tolerant strategy is associated with continuously unproductive conditions, and the ruderal strategy is characteristic of severely disturbed but potentially productive habitats. A triangular model based upon the three strategies may be reconciled with the theory of r- and K-selection, provides an insight into the processes of vegetation succession and dominance, and appears to be capable of extension to fungi and to animals.

4,907 citations

Journal ArticleDOI
TL;DR: Under optimal conditions, the most outstanding genotype was ICS-1, both in plant height, number of leaves, and stomatal conductance, this being proof that this genotype develops excellently and stands out if it has the right conditions and water availability.
Abstract: This research is part of an effort that the ICT (Institute of Tropical Cultivation) has been doing for several years tending to develop superior genotypes of cocoa (Theobroma cacao L.). That is why this study aims to find tolerant or moderately tolerant cocoa genotypes and accessions to water stress with resistance to pests and diseases and high production and industrial quality. Twenty genotypes of cocoa seedlings were investigated, during the period of 6 months, in a soil with sandy-loam texture under nursery conditions, of controlled irrigation. A split plot design was used, with 40 treatments and 3 repetitions. In addition, daily data of the micro climatic characteristics (T °, HR) were taken, in which different indicators of variable were evaluated such as the stomatal conductance (CE) that is greatly influenced by the T ° and HR. The results obtained indicate that the genotypes that showed moderate tolerance to water stress were UNG - 77, UNG - 53, ICT - 1281 and ICT - 1112; the non-tolerant ones were PAS - 93, CEPEC - 2002, ICT - 2142, ICT - 1092, CP - 2005 - C10, TSH - 1188, CCN - 51, IMC - 67, PH - 17, AYP - 15, ICS - 6, BN - 34, ICT - 1506, PAS - 91, PH - 990 and ICS - 1. Under optimal conditions, the most outstanding genotype was ICS-1, both in plant height, number of leaves, and stomatal conductance, this being proof that this genotype develops excellently and stands out if it has the right conditions and water availability.

3,693 citations

Journal ArticleDOI
TL;DR: Surviving in certain environments clearly does not require maximising photosynthetic capacity for a given leaf nitrogen content, as variation reflects different strategies of nitrogen partitioning, the electron transport capacity per unit of chlorophyll and the specific activity of RuBP carboxylase.
Abstract: The photosynthetic capacity of leaves is related to the nitrogen content primarily bacause the proteins of the Calvin cycle and thylakoids represent the majority of leaf nitrogen. To a first approximation, thylakoid nitrogen is proportional to the chlorophyll content (50 mol thylakoid N mol-1 Chl). Within species there are strong linear relationships between nitrogen and both RuBP carboxylase and chlorophyll. With increasing nitrogen per unit leaf area, the proportion of total leaf nitrogen in the thylakoids remains the same while the proportion in soluble protein increases. In many species, growth under lower irradiance greatly increases the partitioning of nitrogen into chlorophyll and the thylakoids, while the electron transport capacity per unit of chlorophyll declines. If growth irradiance influences the relationship between photosynthetic capacity and nitrogen content, predicting nitrogen distribution between leaves in a canopy becomes more complicated. When both photosynthetic capacity and leaf nitrogen content are expressed on the basis of leaf area, considerable variation in the photosynthetic capacity for a given leaf nitrogen content is found between species. The variation reflects different strategies of nitrogen partitioning, the electron transport capacity per unit of chlorophyll and the specific activity of RuBP carboxylase. Survival in certain environments clearly does not require maximising photosynthetic capacity for a given leaf nitrogen content. Species that flourish in the shade partition relatively more nitrogen into the thylakoids, although this is associated with lower photosynthetic capacity per unit of nitrogen.

2,973 citations