scispace - formally typeset
Journal ArticleDOI: 10.1038/S41586-021-03217-8

Ligand-engineered bandgap stability in mixed-halide perovskite LEDs.

04 Mar 2021-Nature (Nature Publishing Group)-Vol. 591, Iss: 7848, pp 72-77
Abstract: Lead halide perovskites are promising semiconductors for light-emitting applications because they exhibit bright, bandgap-tunable luminescence with high colour purity1,2. Photoluminescence quantum yields close to unity have been achieved for perovskite nanocrystals across a broad range of emission colours, and light-emitting diodes with external quantum efficiencies exceeding 20 per cent-approaching those of commercial organic light-emitting diodes-have been demonstrated in both the infrared and the green emission channels1,3,4. However, owing to the formation of lower-bandgap iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet been realized5,6. Here we report the treatment of mixed-halide perovskite nanocrystals with multidentate ligands to suppress halide segregation under electroluminescent operation. We demonstrate colour-stable, red emission centred at 620 nanometres, with an electroluminescence external quantum efficiency of 20.3 per cent. We show that a key function of the ligand treatment is to 'clean' the nanocrystal surface through the removal of lead atoms. Density functional theory calculations reveal that the binding between the ligands and the nanocrystal surface suppresses the formation of iodine Frenkel defects, which in turn inhibits halide segregation. Our work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects. This is critical to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications-such as photovoltaics-for which bandgap stability is required.

... read more

Topics: Light emission (56%), Nanocrystal (55%), Perovskite (structure) (55%) ... show more
Citations
  More

62 results found


Journal ArticleDOI: 10.1021/ACSNANO.0C08903
Amrita Dey1, Junzhi Ye2, Apurba De3, Elke Debroye4  +75 moreInstitutions (39)
27 Jul 2021-ACS Nano
Abstract: Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.

... read more

48 Citations


Journal ArticleDOI: 10.1002/ANIE.202104812
Ya-Kun Wang1, Ya-Kun Wang2, Fanglong Yuan2, Yitong Dong2  +26 moreInstitutions (6)
12 Jul 2021-Angewandte Chemie
Abstract: The all-inorganic nature of CsPbI3 perovskites allows to enhance stability in perovskite devices. Research efforts have led to improved stability of the black phase in CsPbI3 films; however, these strategies-including strain and doping-are based on organic-ligand-capped perovskites, which prevent perovskites from forming the close-packed quantum dot (QD) solids necessary to achieve high charge and thermal transport. We developed an inorganic ligand exchange that leads to CsPbI3 QD films with superior phase stability and increased thermal transport. The atomic-ligand-exchanged QD films, once mechanically coupled, exhibit improved phase stability, and we link this to distributing strain across the film. Operando measurements of the temperature of the LEDs indicate that KI-exchanged QD films exhibit increased thermal transport compared to controls that rely on organic ligands. The LEDs exhibit a maximum EQE of 23 % with an electroluminescence emission centered at 640 nm (FWHM: ≈31 nm). These red LEDs provide an operating half-lifetime of 10 h (luminance of 200 cd m-2 ) and an operating stability that is 6× higher than that of control devices.

... read more

Topics: Quantum dot (52%), Perovskite (structure) (52%), Light-emitting diode (51%) ... show more

16 Citations


Journal ArticleDOI: 10.1021/ACSENERGYLETT.1C00213
Long Hu1, Long Hu2, Xinwei Guan1, Weijian Chen1  +16 moreInstitutions (4)
01 Apr 2021-ACS energy letters
Abstract: Mixed-halide perovskites are attractive candidates as wide-bandgap absorber layers in tandem solar cells However, photoinduced phase segregation leads to the formation of Br-rich and I-rich domain

... read more

Topics: Perovskite (structure) (58%), Phase (matter) (52%)

6 Citations


Open accessJournal ArticleDOI: 10.1039/D1TA00955A
Junke Jiang1, Feng Liu2, Qing Shen3, Shuxia Tao1Institutions (3)
Abstract: Narrow-bandgap CsSnxPb1−xI3 perovskite quantum dots (QDs) show great promise for optoelectronic applications owing to their reduced use of toxic Pb, improved phase stability, and tunable band gaps in the visible and near-infrared range. The use of small ions has been proven beneficial in enhancing the stability and photoluminescence quantum yield (PLQY) of perovskite QDs. The introduction of sodium (Na) has succeeded in boosting the PLQY of CsSn0.6Pb0.4I3 QDs. Unfortunately, the initial PLQY of the Na-doped QDs undergoes a fast degradation after one-day storage in solution, hindering their practical applications. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations, we study the effect of Na ions on the strength of surface bonds, defect formation energies, and the interactions between surface ligands and perovskite QDs. Our results suggest that Na ions enhance the covalent bonding of surface tin–iodine bonds and form strong ionic bonding with the neighboring iodine anions, thus suppressing the formation of I and Sn vacancies. Furthermore, Na ions also enhance the binding strength of the surface ligands with the perovskite QD surface. However, according to our AIMD simulations, the enhanced surface ligand binding is only effective on a selected surface configuration. While the position of Na ions remains intact on a CsI-terminated surface, they diffuse vigorously on an MI2-terminated surface. As a result, the positive effect of Na vanishes with time, explaining the relatively short lifetime of the experimentally obtained high PLQYs. Our results indicate that engineering the surface termination of the QDs could be the next step in maintaining the favorable effect of Na doping for a high and stable PLQY of Sn–Pb QDs.

... read more

Topics: Perovskite (structure) (54%), Ionic bonding (54%)

3 Citations



References
  More

56 results found


Journal ArticleDOI: 10.1103/PHYSREVLETT.77.3865
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

... read more

117,932 Citations


Open accessJournal ArticleDOI: 10.1088/0953-8984/21/39/395502
Paolo Giannozzi1, Stefano Baroni2, Stefano Baroni3, Nicola Bonini4  +37 moreInstitutions (13)
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

... read more

Topics: Quantum ESPRESSO (66%), Espresso (56%)

15,767 Citations


Open accessJournal ArticleDOI: 10.1088/0953-8984/21/39/395502
Abstract: Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

... read more

Topics: Quantum ESPRESSO (66%)

10,655 Citations


Journal ArticleDOI: 10.1021/NL400349B
Jun Hong Noh, Sang Hyuk Im1, Jin Hyuck Heo, Tarak Nath Mandal  +1 moreInstitutions (2)
21 Mar 2013-Nano Letters
Abstract: Chemically tuned inorganic–organic hybrid materials, based on CH3NH3(═MA)Pb(I1–xBrx)3 perovskites, have been studied using UV–vis absorption and X-ray diffraction patterns and applied to nanostructured solar cells. The band gap engineering brought about by the chemical management of MAPb(I1–xBrx)3 perovskites can be controllably tuned to cover almost the entire visible spectrum, enabling the realization of colorful solar cells. We demonstrate highly efficient solar cells exhibiting 12.3% in a power conversion efficiency of under standard AM 1.5, for the most efficient device, as a result of tunable composition for the light harvester in conjunction with a mesoporous TiO2 film and a hole conducting polymer. We believe that the works highlighted in this paper represent one step toward the realization of low-cost, high-efficiency, and long-term stability with colorful solar cells.

... read more

Topics: Hybrid solar cell (67%), Solar energy (55%)

3,521 Citations


Journal ArticleDOI: 10.3109/10409239509083491
John D. Hayes1, David J. Pulford1Institutions (1)
Abstract: The glutathione S-transferases (GST) represent a major group of detoxification enzymes. All eukaryotic species possess multiple cytosolic and membrane-bound GST isoenzymes, each of which displays distinct catalytic as well as noncatalytic binding properties: the cytosolic enzymes are encoded by at least five distantly related gene families (designated class alpha, mu, pi, sigma, and theta GST), whereas the membrane-bound enzymes, microsomal GST and leukotriene C, synthetase, are encoded by single genes and both have arisen separately from the soluble GST. Evidence suggests that the level of expression of GST is a crucial factor in determining the sensitivity of cells to a broad spectrum of toxic chemicals. In this article the biochemical functions of GST are described to show how individual isoenzymes contribute to resistance to carcinogens, antitumor drugs, environmental pollutants, and products of oxidative stress.A description of the mechanisms of transcriptional and posttranscriptional regulat...

... read more

3,415 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20222
202160