scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Light-at-night, circadian disruption and breast cancer: assessment of existing evidence

01 Aug 2009-International Journal of Epidemiology (Oxford University Press)-Vol. 38, Iss: 4, pp 963-970
TL;DR: If a consensus eventually emerges that LAN does increase risk, then the mechanisms for the effect are important to elucidate for intervention and mitigation and will provide for the development of lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency and aesthetics.
Abstract: Background Breast cancer incidence is increasing globally for largely unknown reasons. The possibility that a portion of the breast cancer burden might be explained by the introduction and increasing use of electricity to light the night was suggested >20 years ago. Methods The theory is based on nocturnal light-induced disruption of circadian rhythms, notably reduction of melatonin synthesis. It has formed the basis for a series of predictions including that non-day shift work would increase risk, blind women would be at lower risk, long sleep duration would lower risk and community nighttime light level would co-distribute with breast cancer incidence on the population level. Results Accumulation of epidemiological evidence has accelerated in recent years, reflected in an International Agency for Research on Cancer (IARC) classification of shift work as a probable human carcinogen (2A). There is also a strong rodent model in support of the light-at-night (LAN) idea. Conclusion If a consensus eventually emerges that LAN does increase risk, then the mechanisms for the effect are important to elucidate for intervention and mitigation. The basic understanding of phototransduction for the circadian system, and of the molecular genetics of circadian rhythm generation are both advancing rapidly, and will provide for the development of lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency and aesthetics. In the interim, there are strategies now available to reduce the potential for circadian disruption, which include extending the daily dark period, appreciate nocturnal awakening in the dark, using dim red light for nighttime necessities, and unless recommended by a physician, not taking melatonin tablets.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Control of electron flux, prevention of bottlenecks in the respiratory chain and electron leakage contribute to the avoidance of damage by free radicals and seem to be important in neuroprotection, inflammatory diseases and, presumably, aging.

709 citations


Cites background from "Light-at-night, circadian disruptio..."

  • ...The precise mechanisms of cancer prevention remain to be elucidated (Stevens, 2009)....

    [...]

Journal ArticleDOI
TL;DR: A framework that focuses on the cross‐factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways that light influences biological systems, particularly the distinction between light as a resource and light as an information source is proposed.
Abstract: The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights.

706 citations


Cites background from "Light-at-night, circadian disruptio..."

  • ...Exposure to light at night has been shown to disrupt the circadian cycle of hormone production in humans, particularly melatonin, which has been linked to an increase in cancer risk in shift-workers (Stevens, 1987, 2009; Megdal et al., 2005; Reiter et al., 2011)....

    [...]

Journal ArticleDOI
TL;DR: Findings on shift work, in relation to risks of CVD, metabolic syndrome and diabetes are also suggestive but not conclusive for an adverse relationship, making it difficult to draw general conclusions.
Abstract: Background Shift work, including night work, has been hypothesized to increase the risk of chronic diseases, including cancer, cardiovascular disease (CVD), metabolic syndrome and diabetes. Recent reviews of evidence relating to these hypotheses have focussed on specific diseases or potential mechanisms, but no general summary of the current data on shift work and chronic disease has been published. Methods Systematic and critical reviews and recent original studies indexed in PubMed prior to 31 December 2009 were retrieved, aided by manual searches of reference lists. The main conclusions from reviews and principle results from recent studies are presented in text and tables. Results Published evidence is suggestive but not conclusive for an adverse association between night work and breast cancer but limited and inconsistent for cancers at other sites and all cancers combined. Findings on shift work, in relation to risks of CVD, metabolic syndrome and diabetes are also suggestive but not conclusive for an adverse relationship. Conclusions Heterogeneity of study exposures and outcomes and emphasis on positive but non-significant results make it difficult to draw general conclusions. Further data are needed for additional disease endpoints and study populations.

514 citations


Cites background from "Light-at-night, circadian disruptio..."

  • ...responsible for the rise in breast cancer incidence seen in the industrialized world [3]....

    [...]

Journal ArticleDOI
TL;DR: The amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium and most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs.

473 citations


Cites background from "Light-at-night, circadian disruptio..."

  • ...As seen, circadian disruption is also induced by light exposure at night and light at night is becoming a public health issue (Pauley, 2004; Stevens, 2009)....

    [...]

Journal ArticleDOI
20 Feb 2014-Immunity
TL;DR: Understanding the daily rhythm of the immune system could have implications for vaccinations and how the authors manage infectious and inflammatory diseases.

424 citations


Cites background from "Light-at-night, circadian disruptio..."

  • ...It has also been concluded that ‘shift work that involves circadian disruption is probably carcinogenic to humans’ (Straif et al., 2007) and can lead to higher incidence of cardiovascular disease and obesity (Karlsson et al., 2001; Stevens, 2009)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The findings-that the sensitivity of the human alerting response to light and its thermoregulatory sequelae are blue-shifted relative to the three-cone visual photopic system-indicate an additional role for these novel photoreceptors in modifying human alertness, thermophysiology, and heart rate.
Abstract: Light can elicit acute physiological and alerting responses in humans, the magnitude of which depends on the timing, intensity, and duration of light exposure. Here, we report that the alerting response of light as well as its effects on thermoregulation and heart rate are also wavelength dependent. Exposure to 2 h of monochromatic light at 460 nm in the late evening induced a significantly greater melatonin suppression than occurred with 550-nm monochromatic light, concomitant with a significantly greater alerting response and increased core body temperature and heart rate ( approximately 2.8 x 10(13) photons/cm(2)/sec for each light treatment). Light diminished the distal-proximal skin temperature gradient, a measure of the degree of vasoconstriction, independent of wavelength. Nonclassical ocular photoreceptors with peak sensitivity around 460 nm have been found to regulate circadian rhythm function as measured by melatonin suppression and phase shifting. Our findings-that the sensitivity of the human alerting response to light and its thermoregulatory sequelae are blue-shifted relative to the three-cone visual photopic system-indicate an additional role for these novel photoreceptors in modifying human alertness, thermophysiology, and heart rate.

787 citations

Journal ArticleDOI
TL;DR: It is suggested that working a rotating night shift at least three nights per month for 15 or more years may increase the risk of colorectal cancer in women.
Abstract: Exposure to light at night suppresses the physiologic production of melatonin, a hormone that has antiproliferative effects on intestinal cancers. Although observational studies have associated night-shift work with an increased risk of breast cancer, the effect of night-shift work on the risk of other cancers is not known. We prospectively examined the relationship between working rotating night shifts and the risk of colorectal cancers among female participants in the Nurses' Health Study. We documented 602 incident cases of colorectal cancer among 78 586 women who were followed up from 1988 through 1998. Compared with women who never worked rotating night shifts, women who worked 1-14 years or 15 years or more on rotating night shifts had multivariate relative risks of colorectal cancer of 1.00 (95% confidence interval [CI] = 0.84 to 1.19) and 1.35 (95% CI = 1.03 to 1.77), respectively (P(trend) =.04). These data suggest that working a rotating night shift at least three nights per month for 15 or more years may increase the risk of colorectal cancer in women.

748 citations

Journal ArticleDOI
TL;DR: It is reported here that the circadian resetting response in humans, as measured by the pineal melatonin rhythm, is also wavelength dependent, and photopic lux, the standard unit of illuminance, is inappropriate when quantifying the photic drive required to reset the human circadian pacemaker.
Abstract: The endogenous circadian oscillator in mammals, situated in the suprachiasmatic nuclei, receives environmental photic input from specialized subsets of photoreceptive retinal ganglion cells. The human circadian pacemaker is exquisitely sensitive to ocular light exposure, even in some people who are otherwise totally blind. The magnitude of the resetting response to white light depends on the timing, intensity, duration, number and pattern of exposures. We report here that the circadian resetting response in humans, as measured by the pineal melatonin rhythm, is also wavelength dependent. Exposure to 6.5 h of monochromatic light at 460 nm induces a two-fold greater circadian phase delay than 6.5 h of 555 nm monochromatic light of equal photon density. Similarly, 460 nm monochromatic light causes twice the amount of melatonin suppression compared to 555 nm monochromatic light, and is dependent on the duration of exposure in addition to wavelength. These studies demonstrate that the peak of sensitivity of the human circadian pacemaker to light is blue-shifted relative to the three-cone visual photopic system, the sensitivity of which peaks at �555 nm. Thus photopic lux, the standard unit of illuminance, is inappropriate when quantifying the photic drive required to reset the human circadian pacemaker.

729 citations

Journal ArticleDOI
TL;DR: Evidence is rapidly accumulating to indicate that chronic partial sleep loss may increase the risk of obesity and diabetes, and multiple epidemiologic studies have shown an association between short sleep and higher body mass index after controlling for a variety of possible confounders.
Abstract: During the past few decades, sleep curtailment has become a very common in industrialized countries. This trend for shorter sleep duration has developed over the same time period as the dramatic increase in the prevalence of obesity and diabetes. Evidence is rapidly accumulating to indicate that chronic partial sleep loss may increase the risk of obesity and diabetes. Laboratory studies in healthy volunteers have shown that experimental sleep restriction is associated with an adverse impact on glucose homeostasis. Insulin sensitivity decreases rapidly and markedly without adequate compensation in beta cell function, resulting in an elevated risk of diabetes. Prospective epidemiologic studies in both children and adults are consistent with a causative role of short sleep in the increased risk of diabetes. Sleep curtailment is also associated with a dysregulation of the neuroendocrine control of appetite, with a reduction of the satiety factor, leptin, and an increase in the hunger-promoting hormone, ghrelin. Thus, sleep loss may alter the ability of leptin and ghrelin to accurately signal caloric need, acting in concert to produce an internal misperception of insufficient energy availability. The adverse impact of sleep deprivation on appetite regulation is likely to be driven by increased activity in neuronal populations expressing the excitatory peptides orexins that promote both waking and feeding. Consistent with the laboratory evidence, multiple epidemiologic studies have shown an association between short sleep and higher body mass index after controlling for a variety of possible confounders.

716 citations

Journal ArticleDOI
TL;DR: Investigation of the mechanisms by which the circadian clock controls cell proliferation and other cellular functions might lead to new therapeutic targets and highlight the importance of the circadian Clock in tumour suppression in vivo.
Abstract: The circadian rhythms are daily oscillations in various biological processes that are regulated by an endogenous clock. Disruption of these rhythms has been associated with cancer in humans. One of the cellular processes that is regulated by circadian rhythm is cell proliferation, which often shows asynchrony between normal and malignant tissues. This asynchrony highlights the importance of the circadian clock in tumour suppression in vivo and is one of the theoretical foundations for cancer chronotherapy. Investigation of the mechanisms by which the circadian clock controls cell proliferation and other cellular functions might lead to new therapeutic targets.

663 citations