scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects.

01 Aug 2012-Progress in Energy and Combustion Science (Pergamon)-Vol. 38, Iss: 4, pp 449-467
TL;DR: A review of the major steps involved in cellulosic-based bioethanol processes and potential issues challenging these operations is provided in this paper, where possible solutions and recoveries that could improve bioprocessing are also addressed.
About: This article is published in Progress in Energy and Combustion Science.The article was published on 2012-08-01. It has received 1172 citations till now. The article focuses on the topics: Biomass & Sustainable biofuel.
Citations
More filters
Journal ArticleDOI
TL;DR: A broad review of the state-of-the-art biomass pyrolysis research can be found in this article, where three major components (cellulose, hemicellulose and lignin) are discussed in detail.

1,613 citations

Journal ArticleDOI
TL;DR: This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations.
Abstract: In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon–carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.

1,466 citations

Journal ArticleDOI
TL;DR: Nanocellulose has excellent strength, high Young's modulus, biocompatibility, and tunable self-assembly, thixotropic, and photonic properties, which are essential for the applications of this material.
Abstract: With increasing environmental and ecological concerns due to the use of petroleum-based chemicals and products, the synthesis of fine chemicals and functional materials from natural resources is of great public value. Nanocellulose may prove to be one of the most promising green materials of modern times due to its intrinsic properties, renewability, and abundance. In this review, we present nanocellulose-based materials from sourcing, synthesis, and surface modification of nanocellulose, to materials formation and applications. Nanocellulose can be sourced from biomass, plants, or bacteria, relying on fairly simple, scalable, and efficient isolation techniques. Mechanical, chemical, and enzymatic treatments, or a combination of these, can be used to extract nanocellulose from natural sources. The properties of nanocellulose are dependent on the source, the isolation technique, and potential subsequent surface transformations. Nanocellulose surface modification techniques are typically used to introduce e...

864 citations

Journal ArticleDOI
01 Aug 2015
TL;DR: Mechanisms and recent advances in pretreatment, cellulases production and second-generation ethanol production processes are described here.
Abstract: Production of liquid biofuels, such as bioethanol, has been advocated as a sustainable option to tackle the problems associated with rising crude oil prices, global warming and diminishing petroleum reserves. Second-generation bioethanol is produced from lignocellulosic feedstock by its saccharification, followed by microbial fermentation and product recovery. Agricultural residues generated as wastes during or after processing of agricultural crops are one of such renewable and lignocellulose-rich biomass resources available in huge amounts for bioethanol production. These agricultural residues are converted to bioethanol in several steps which are described here. This review enlightens various steps involved in production of the second-generation bioethanol. Mechanisms and recent advances in pretreatment, cellulases production and second-generation ethanol production processes are described here.

813 citations


Cites background from "Lignocellulosic biomass for bioetha..."

  • ...Moreover, crop residues have short harvest period that renders them more consistently available to bioethanol production (Knauf and Moniruzzaman 2004; Kim and Dale 2004; Limayema and Ricke 2012)....

    [...]

Journal ArticleDOI
TL;DR: An overview on the diversity of biomass, technological approaches and microbial contribution to the conversion of lignocellulosic biomass (LCB) into ethanol can be found in this paper.
Abstract: Bioethanol is one of the most promising and eco-friendly alternatives to fossil fuels, which is produced from renewable sources. Although almost all the current fuel ethanol is generated from edible sources (sugars and starch), lignocellulosic biomass (LCB) has drawn much attention in recent times. However, the conversion efficiency as well as ethanol yield of the biomass differs greatly with respect to the source and nature of LCB, primarily due to the variation in lignocellulosic content. Two major polysaccharides in LCB, namely, cellulose and hemicellulose firmly link to lignin and form a complex lignocellulosic network, which is highly robust and recalcitrant to depolymerization. For this reason, generation of ethanol from LCB requires a complicated conversion process that has made it commercially non-competitive. As attempts to exploit LCBs into commercial ethanol production, recent research efforts have been devoted to the techno-economic improvements of the overall conversion process, in addition to screen out promising feedstocks. This review paper presents an overview on the diversity of biomass, technological approaches and microbial contribution to the conversion of LCB into ethanol.

536 citations

References
More filters
Book
30 Jun 1972
TL;DR: An overview of Chemical Reaction Engineering is presented, followed by an introduction to Reactor Design, and a discussion of the Dispersion Model.
Abstract: Partial table of contents: Overview of Chemical Reaction Engineering. HOMOGENEOUS REACTIONS IN IDEAL REACTORS. Introduction to Reactor Design. Design for Single Reactions. Design for Parallel Reactions. Potpourri of Multiple Reactions. NON IDEAL FLOW. Compartment Models. The Dispersion Model. The Tank--in--Series Model. REACTIONS CATALYZED BY SOLIDS. Solid Catalyzed Reactions. The Packed Bed Catalytic Reactor. Deactivating Catalysts. HETEROGENEOUS REACTIONS. Fluid--Fluid Reactions: Kinetics. Fluid--Particle Reactions: Design. BIOCHEMICAL REACTIONS. Enzyme Fermentation. Substrate Limiting Microbial Fermentation. Product Limiting Microbial Fermentation. Appendix. Index.

8,257 citations

Journal ArticleDOI
TL;DR: This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods and concludes that pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass.

6,110 citations

Journal ArticleDOI
TL;DR: Simultaneous saccharification and fermentation effectively removes glucose, which is an inhibitor to cellulase activity, thus increasing the yield and rate of cellulose hydrolysis, thereby increasing the cost of ethanol production from lignocellulosic materials.

5,860 citations


"Lignocellulosic biomass for bioetha..." refers background in this paper

  • ...While acid pretreatment results in a formation of reactive substrates when acid is used as a catalyst, acid hydrolysis causes significant chemical dehydration of the monosaccharides formed such that aldehydes and other types of degradation products are generated [19]....

    [...]

  • ...It is followed by hexose and pentose degradation and formation of high concentrations of toxic compounds including HMF and phenolics detrimental to an effective saccharification [19]....

    [...]

Journal ArticleDOI
27 Jan 2006-Science
TL;DR: The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.
Abstract: Biomass represents an abundant carbon-neutral renewable resource for the production of bioenergy and biomaterials, and its enhanced use would address several societal needs. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally referred to as the biorefinery. The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.

5,344 citations

Journal ArticleDOI
TL;DR: A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Abstract: Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.

4,769 citations