scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review

TL;DR: A broad review of the state-of-the-art biomass pyrolysis research can be found in this article, where three major components (cellulose, hemicellulose and lignin) are discussed in detail.
About: This article is published in Progress in Energy and Combustion Science.The article was published on 2017-09-01. It has received 1613 citations till now. The article focuses on the topics: Lignocellulosic biomass & Biomass.
Citations
More filters
Journal ArticleDOI
TL;DR: This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations.
Abstract: In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon–carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.

1,466 citations

Journal ArticleDOI
TL;DR: In this paper, a microwave pyrolysis of biomass is proposed to produce activated biochar with desirable properties for wide application in pollution control, catalysis and energy storage, and the key implications for future development are highlighted.

433 citations

Journal ArticleDOI
TL;DR: This review aims at providing a comprehensive overview of the up-to-date known structural models of hard carbons and their correlation with the proposed models for the sodium-ion storage mechanisms and a careful evaluation of potential strategies to ensure a high degree of sustainability.

412 citations

Journal ArticleDOI
TL;DR: In this article, a review of various pyrolysis process, especially focusing on the effects of essential parameters, the process design, the reactors and the catalysts on the process, is presented.

368 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the progress in biomass torrefaction technologies is provided in this article, where the authors perform an in-depth literature survey and identify a current trend in practical tor-refaction development and environmental performance.

357 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a simulation algorithm for the stochastic formulation of chemical kinetics is proposed, which uses a rigorously derived Monte Carlo procedure to numerically simulate the time evolution of a given chemical system.
Abstract: There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical system: The deterministic approach regards the time evolution as a continuous, wholly predictable process which is governed by a set of coupled, ordinary differential equations (the “reaction-rate equations”); the stochastic approach regards the time evolution as a kind of random-walk process which is governed by a single differential-difference equation (the “master equation”). Fairly simple kinetic theory arguments show that the stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way to make exact numerical calculations within the framework of the stochastic formulation without having to deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like the master equation, this “stochastic simulation algorithm” correctly accounts for the inherent fluctuations and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal time increments df by finite time steps At. The feasibility and utility of the simulation algorithm are demonstrated by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and the Oregonator.

10,275 citations

Journal ArticleDOI
TL;DR: This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods and concludes that pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass.

6,110 citations

Journal ArticleDOI
01 Aug 2007-Fuel
TL;DR: In this article, the pyrolysis characteristics of three main components (hemicellulose, cellulose and lignin) of biomass were investigated using, respectively, a thermogravimetric analyzer (TGA) with differential scanning calorimetry (DSC) detector and a pack bed.

5,859 citations

Journal ArticleDOI
01 Jan 1964-Nature
TL;DR: In this article, a thermocouple is used to measure the sample temperature in a Stanton HT-D thermobalance, the bead of which is positioned in or near the sample, depending on crucible design.
Abstract: THE use of thermogravimetric data to evaluate kinetic parameters of solid-state reactions involving weight loss (or gain) has been investigated by a number of workers1–4. Freeman and Carroll2 have stated some of the advantages of this method over conventional isothermal studies. To these reasons may be added the advantage of using one single sample for investigation. However, the importance of procedural details, such as crucible geometry, heating rate, pre-history of sample, and particle size, on the parameters has yet to be fully investigated. It is also necessary to ensure accurate temperature measurement, both for precision and also to detect any departure from a linear heating rate due to endo- or exo-thermic reactions. (The effect of these may be largely eliminated by the use of small samples.) In our present work (using a Stanton HT–D thermobalance) the sample temperature is measured directly by means of a thermocouple the bead of which is positioned in or near the sample, depending on crucible design, the wires of which run down a twin-bore rise rod. The connexion between the end of the thermocouple wires on the balance arm and the terminal block is made by 0.001 in. platinum and platinum/rhodium wires5. It has been shown that these wires do not affect the performance of the balance but act merely as a subsidiary damping. From the terminal block compensated cable leads to the cold junction and a potentiometric arrangement for direct measurement of the thermocouple output.

5,770 citations