scispace - formally typeset
Open AccessJournal ArticleDOI

limma powers differential expression analyses for RNA-sequencing and microarray studies

Reads0
Chats0
TLDR
The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract
limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Integrating single-cell transcriptomic data across different conditions, technologies, and species.

TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Journal ArticleDOI

Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown

TL;DR: This protocol describes all the steps necessary to process a large set of raw sequencing reads and create lists of gene transcripts, expression levels, and differentially expressed genes and transcripts.
Journal ArticleDOI

Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial

TL;DR: Treatment with atezolizumab resulted in a significantly improved RECIST v1.1 response rate, compared with a historical control overall response rate of 10%, and Exploratory analyses showed The Cancer Genome Atlas (TCGA) subtypes and mutation load to be independently predictive for response to atezolediazepine.
Journal ArticleDOI

Fast, sensitive and accurate integration of single-cell data with Harmony.

TL;DR: Harmony, for the integration of single-cell transcriptomic data, identifies broad and fine-grained populations, scales to large datasets, and can integrate sequencing- and imaging-based data.
Journal ArticleDOI

Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences

TL;DR: It is illustrated that while the presence of differential isoform usage can lead to inflated false discovery rates in differential expression analyses on simple count matrices and transcript-level abundance estimates improve the performance in simulated data, the difference is relatively minor in several real data sets.
References
More filters
Journal ArticleDOI

Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments

TL;DR: The hierarchical model of Lonnstedt and Speed (2002) is developed into a practical approach for general microarray experiments with arbitrary numbers of treatments and RNA samples and the moderated t-statistic is shown to follow a t-distribution with augmented degrees of freedom.
Journal ArticleDOI

Statistical methods for assessing agreement between two methods of clinical measurement

TL;DR: In this article, an alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability, which is often used in clinical comparison of a new measurement technique with an established one.
Journal ArticleDOI

A comparison of normalization methods for high density oligonucleotide array data based on variance and bias

TL;DR: Three methods of performing normalization at the probe intensity level are presented: a one number scaling based algorithm and a method that uses a non-linear normalizing relation by comparing the variability and bias of an expression measure and the simplest and quickest complete data method is found to perform favorably.
Journal ArticleDOI

A scaling normalization method for differential expression analysis of RNA-seq data

TL;DR: A simple and effective method for performing normalization is outlined and dramatically improved results for inferring differential expression in simulated and publicly available data sets are shown.
Related Papers (5)
Trending Questions (1)
Differential gene expression analysis with limma ?

limma is a software package that performs differential gene expression analysis using linear models.