scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Linear and nonlinear vibration analysis of sandwich cylindrical shell with constrained viscoelastic core layer

01 Jan 2012-International Journal of Mechanical Sciences (Pergamon)-Vol. 54, Iss: 1, pp 156-171
TL;DR: In this article, the effect of geometric nonlinearity due to the large deformation of the shell has also been considered assuming small strain and moderate rotation, and it is shown that slippage between layers at the interfaces leads to reduction in loss factor at the majority of modes.
About: This article is published in International Journal of Mechanical Sciences.The article was published on 2012-01-01. It has received 43 citations till now. The article focuses on the topics: Finite element method & Shell (structure).
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the various research methods and theory calculation models that are employed in engineering to study the static and dynamic vibration characteristics of viscoelastic damping material (VDM) formed structures is presented in this article.

204 citations

Journal ArticleDOI
TL;DR: In this paper, a review of geometrically non-linear free and forced vibrations of shells made of traditional and advanced materials is presented, including closed shells and curved panels made of isotropic, laminated composite, piezoelectric, functionally graded and hyperelastic materials.
Abstract: The present literature review focuses on geometrically non-linear free and forced vibrations of shells made of traditional and advanced materials. Flat and imperfect plates and membranes are excluded. Closed shells and curved panels made of isotropic, laminated composite, piezoelectric, functionally graded and hyperelastic materials are reviewed and great attention is given to non-linear vibrations of shells subjected to normal and in-plane excitations. Theoretical, numerical and experimental studies dealing with particular dynamical problems involving parametric vibrations, stability, dynamic buckling, non-stationary vibrations and chaotic vibrations are also addressed. Moreover, several original aspects of non-linear vibrations of shells and panels, including (i) fluid–structure interactions, (ii) geometric imperfections, (iii) effect of geometry and boundary conditions, (iv) thermal loads, (v) electrical loads and (vi) reduced-order models and their accuracy including perturbation techniques, proper orthogonal decomposition, non-linear normal modes and meshless methods are reviewed in depth.

203 citations

Journal ArticleDOI
TL;DR: In this paper, an exact three-dimensional free vibration solution for sandwich cylindrical panels with functionally graded core is presented, where material properties of the FGM core are assumed to be graded in the radial direction, according to a simple power-law distribution in terms of volume fractions of the constituents.

66 citations

Journal ArticleDOI
TL;DR: In this paper, an accurate solution is developed for the vibration and damping characteristics of a three-layered passive constrained layer damping (PCLD) cylindrical shell with general elastically restrained boundaries.

54 citations

Journal ArticleDOI
TL;DR: In this paper, an accurate solution approach based on the first-order shear deformation theory (FSDT) was developed for the free vibration and damping analysis of thick sandwich cylindrical shells with a viscoelastic core under arbitrary boundary conditions.

52 citations

References
More filters
Book
01 Aug 2014
TL;DR: In this article, a comparison of different shell theories for nonlinear vibrations and stability of circular cylindrical shells is presented. But the authors do not consider the effect of boundary conditions on the large-amplitude vibrations of circular cylinders.
Abstract: Introduction. 1. Nonlinear theories of elasticity of plates and shells 2. Nonlinear theories of doubly curved shells for conventional and advanced materials 3. Introduction to nonlinear dynamics 4. Vibrations of rectangular plates 5. Vibrations of empty and fluid-filled circular cylindrical 6. Reduced order models: proper orthogonal decomposition and nonlinear normal modes 7. Comparison of different shell theories for nonlinear vibrations and stability of circular cylindrical shells 8. Effect of boundary conditions on a large-amplitude vibrations of circular cylindrical shells 9. Vibrations of circular cylindrical panels with different boundary conditions 10. Nonlinear vibrations and stability of doubly-curved shallow-shells: isotropic and laminated materials 11. Meshless discretization of plates and shells of complex shapes by using the R-functions 12. Vibrations of circular plates and rotating disks 13. Nonlinear stability of circular cylindrical shells under static and dynamic axial loads 14. Nonlinear stability and vibrations of circular shells conveying flow 15. Nonlinear supersonic flutter of circular cylindrical shells with imperfections.

862 citations

Journal ArticleDOI
TL;DR: In this article, the transverse displacement of a three-layer sandwich beam with a viscoelastic core is derived in terms of the transversal displacement, w, for a 3D beam.

785 citations

Journal ArticleDOI
TL;DR: In this article, a complete set of equations of motion and boundary conditions governing the vibration of sandwich beams are derived by using the energy approach, and they are solved exactly for important boundary conditions.
Abstract: A complete set of equations of motion and boundary conditions governing the vibration of sandwich beams are derived by using the energy approach. They are solved exactly for important boundary conditions. The computational difficulties that were encountered in previous attempts at the exact solution of these equations have been overcome by careful programming. These exact results are presented in the form of design graphs and formulae, and their usage is illustrated by examples.

326 citations

Journal ArticleDOI
TL;DR: In this article, the authors re-examined the definition of loss factor in terms of energy quantities, particularly as it applies to composite viscoelastic systems, and proposed simple relations which express the loss factors of series-parallel arrays of massless VRSs.
Abstract: The definition of loss factor in terms of energy quantities is re‐examined, particularly as it applies to composite viscoelastic systems. A restatement of this definition in terms of a corresponding viscoelastic spring is used to show that this definition is extremely useful for massless (ideal viscoelastic spring) systems, but may be applied unambiguously to spring systems with a single attached mass only at resonance. Simple relations are presented which express the loss factors of series‐parallel arrays of massless viscoelastic springs in terms of properties of the individual components. Implications of these relations in damping of composite structures are discussed. (This work was supported in part by the Aeronautical Systems Division, U. S. Air Force.)

319 citations