scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Linear and Nonlinear Waves

01 Mar 1976-Journal of Applied Mechanics (American Society of Mechanical Engineers)-Vol. 43, Iss: 1, pp 190-190
TL;DR: In this paper, a reference record was created on 2005-11-18, modified on 2016-08-08 and used for the purpose of ondes ; chocs ; onde de : choc reference record.
Abstract: Keywords: ondes ; chocs ; onde de : choc Reference Record created on 2005-11-18, modified on 2016-08-08
Citations
More filters
Book
01 Jan 1990
TL;DR: In this paper, the authors describe the derivation of conservation laws and apply them to linear systems, including the linear advection equation, the Euler equation, and the Riemann problem.
Abstract: I Mathematical Theory- 1 Introduction- 11 Conservation laws- 12 Applications- 13 Mathematical difficulties- 14 Numerical difficulties- 15 Some references- 2 The Derivation of Conservation Laws- 21 Integral and differential forms- 22 Scalar equations- 23 Diffusion- 3 Scalar Conservation Laws- 31 The linear advection equation- 311 Domain of dependence- 312 Nonsmooth data- 32 Burgers' equation- 33 Shock formation- 34 Weak solutions- 35 The Riemann Problem- 36 Shock speed- 37 Manipulating conservation laws- 38 Entropy conditions- 381 Entropy functions- 4 Some Scalar Examples- 41 Traffic flow- 411 Characteristics and "sound speed"- 42 Two phase flow- 5 Some Nonlinear Systems- 51 The Euler equations- 511 Ideal gas- 512 Entropy- 52 Isentropic flow- 53 Isothermal flow- 54 The shallow water equations- 6 Linear Hyperbolic Systems 58- 61 Characteristic variables- 62 Simple waves- 63 The wave equation- 64 Linearization of nonlinear systems- 641 Sound waves- 65 The Riemann Problem- 651 The phase plane- 7 Shocks and the Hugoniot Locus- 71 The Hugoniot locus- 72 Solution of the Riemann problem- 721 Riemann problems with no solution- 73 Genuine nonlinearity- 74 The Lax entropy condition- 75 Linear degeneracy- 76 The Riemann problem- 8 Rarefaction Waves and Integral Curves- 81 Integral curves- 82 Rarefaction waves- 83 General solution of the Riemann problem- 84 Shock collisions- 9 The Riemann problem for the Euler equations- 91 Contact discontinuities- 92 Solution to the Riemann problem- II Numerical Methods- 10 Numerical Methods for Linear Equations- 101 The global error and convergence- 102 Norms- 103 Local truncation error- 104 Stability- 105 The Lax Equivalence Theorem- 106 The CFL condition- 107 Upwind methods- 11 Computing Discontinuous Solutions- 111 Modified equations- 1111 First order methods and diffusion- 1112 Second order methods and dispersion- 112 Accuracy- 12 Conservative Methods for Nonlinear Problems- 121 Conservative methods- 122 Consistency- 123 Discrete conservation- 124 The Lax-Wendroff Theorem- 125 The entropy condition- 13 Godunov's Method- 131 The Courant-Isaacson-Rees method- 132 Godunov's method- 133 Linear systems- 134 The entropy condition- 135 Scalar conservation laws- 14 Approximate Riemann Solvers- 141 General theory- 1411 The entropy condition- 1412 Modified conservation laws- 142 Roe's approximate Riemann solver- 1421 The numerical flux function for Roe's solver- 1422 A sonic entropy fix- 1423 The scalar case- 1424 A Roe matrix for isothermal flow- 15 Nonlinear Stability- 151 Convergence notions- 152 Compactness- 153 Total variation stability- 154 Total variation diminishing methods- 155 Monotonicity preserving methods- 156 l1-contracting numerical methods- 157 Monotone methods- 16 High Resolution Methods- 161 Artificial Viscosity- 162 Flux-limiter methods- 1621 Linear systems- 163 Slope-limiter methods- 1631 Linear Systems- 1632 Nonlinear scalar equations- 1633 Nonlinear Systems- 17 Semi-discrete Methods- 171 Evolution equations for the cell averages- 172 Spatial accuracy- 173 Reconstruction by primitive functions- 174 ENO schemes- 18 Multidimensional Problems- 181 Semi-discrete methods- 182 Splitting methods- 183 TVD Methods- 184 Multidimensional approaches

3,827 citations

Book
01 Jan 1996
TL;DR: In this article, the authors present a review of rigor properties of low-dimensional models and their applications in the field of fluid mechanics. But they do not consider the effects of random perturbation on models.
Abstract: Preface Part I. Turbulence: 1. Introduction 2. Coherent structures 3. Proper orthogonal decomposition 4. Galerkin projection Part II. Dynamical Systems: 5. Qualitative theory 6. Symmetry 7. One-dimensional 'turbulence' 8. Randomly perturbed systems Part III. 9. Low-dimensional Models: 10. Behaviour of the models Part IV. Other Applications and Related Work: 11. Some other fluid problems 12. Review: prospects for rigor Bibliography.

2,920 citations

Journal ArticleDOI
TL;DR: In this article, a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations.
Abstract: Macroscopic thin liquid films are entities that are important in biophysics, physics, and engineering, as well as in natural settings. They can be composed of common liquids such as water or oil, rheologically complex materials such as polymers solutions or melts, or complex mixtures of phases or components. When the films are subjected to the action of various mechanical, thermal, or structural factors, they display interesting dynamic phenomena such as wave propagation, wave steepening, and development of chaotic responses. Such films can display rupture phenomena creating holes, spreading of fronts, and the development of fingers. In this review a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations. As a result of this long-wave theory, a mathematical system is obtained that does not have the mathematical complexity of the original free-boundary problem but does preserve many of the important features of its physics. The basics of the long-wave theory are explained. If, in addition, the Reynolds number of the flow is not too large, the analogy with Reynolds's theory of lubrication can be drawn. A general nonlinear evolution equation or equations are then derived and various particular cases are considered. Each case contains a discussion of the linear stability properties of the base-state solutions and of the nonlinear spatiotemporal evolution of the interface (and other scalar variables, such as temperature or solute concentration). The cases reducing to a single highly nonlinear evolution equation are first examined. These include: (a) films with constant interfacial shear stress and constant surface tension, (b) films with constant surface tension and gravity only, (c) films with van der Waals (long-range molecular) forces and constant surface tension only, (d) films with thermocapillarity, surface tension, and body force only, (e) films with temperature-dependent physical properties, (f) evaporating/condensing films, (g) films on a thick substrate, (h) films on a horizontal cylinder, and (i) films on a rotating disc. The dynamics of the films with a spatial dependence of the base-state solution are then studied. These include the examples of nonuniform temperature or heat flux at liquid-solid boundaries. Problems which reduce to a set of nonlinear evolution equations are considered next. Those include (a) the dynamics of free liquid films, (b) bounded films with interfacial viscosity, and (c) dynamics of soluble and insoluble surfactants in bounded and free films. The spreading of drops on a solid surface and moving contact lines, including effects of heat and mass transport and van der Waals attractions, are then addressed. Several related topics such as falling films and sheets and Hele-Shaw flows are also briefly discussed. The results discussed give motivation for the development of careful experiments which can be used to test the theories and exhibit new phenomena.

2,689 citations

Journal ArticleDOI
TL;DR: In this paper, a critical review of particle-hopping models of vehicular traffic is presented, focusing on the results obtained mainly from the so-called "particle hopping" models, particularly emphasizing those formulated in recent years using the language of cellular automata.

2,211 citations


Cites background from "Linear and Nonlinear Waves"

  • ...If we de"ne a wave to be `recognizable signal that is transferred from one part of a medium to another with a recognizable velocity of propagationa [51] then the solutions of the form (7) can be regarded as a `density wavea....

    [...]

  • ...The advantage of this route to the theory of tra$c #ow is that the Burgers equation (14) can be transformed further into a di!usion equation, thereby getting rid of the nonlinearity, through a nonlinear transformation called the Cole}Hopf transformation [51]....

    [...]

  • ...which is the (deterministic) Burgers equation [51,53]....

    [...]

  • ...The time-evolution of the density pro"le can be shown graphically [50,51] on the space}time diagram (i....

    [...]

Journal ArticleDOI
TL;DR: In this paper, Hilbert spectral analysis is proposed as an alternative to wavelet analysis, which provides not only a more precise definition of particular events in time-frequency space, but also more physically meaningful interpretations of the underlying dynamic processes.
Abstract: We survey the newly developed Hilbert spectral analysis method and its applications to Stokes waves, nonlinear wave evolution processes, the spectral form of the random wave field, and turbulence. Our emphasis is on the inadequacy of presently available methods in nonlinear and nonstationary data analysis. Hilbert spectral analysis is here proposed as an alternative. This new method provides not only a more precise definition of particular events in time-frequency space than wavelet analysis, but also more physically meaningful interpretations of the underlying dynamic processes.

1,945 citations


Cites background from "Linear and Nonlinear Waves"

  • ...All water waves are nonlinear (Whitham 1974); therefore, harmonic analysis has always been an inseparable part of wave phenomenon studies....

    [...]