scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Linear prediction: A tutorial review

John Makhoul1
01 Apr 1975-Vol. 63, Iss: 4, pp 561-580
TL;DR: This paper gives an exposition of linear prediction in the analysis of discrete signals as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal.
Abstract: This paper gives an exposition of linear prediction in the analysis of discrete signals The signal is modeled as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal In the frequency domain, this is equivalent to modeling the signal spectrum by a pole-zero spectrum The major part of the paper is devoted to all-pole models The model parameters are obtained by a least squares analysis in the time domain Two methods result, depending on whether the signal is assumed to be stationary or nonstationary The same results are then derived in the frequency domain The resulting spectral matching formulation allows for the modeling of selected portions of a spectrum, for arbitrary spectral shaping in the frequency domain, and for the modeling of continuous as well as discrete spectra This also leads to a discussion of the advantages and disadvantages of the least squares error criterion A spectral interpretation is given to the normalized minimum prediction error Applications of the normalized error are given, including the determination of an "optimal" number of poles The use of linear prediction in data compression is reviewed For purposes of transmission, particular attention is given to the quantization and encoding of the reflection (or partial correlation) coefficients Finally, a brief introduction to pole-zero modeling is given
Citations
More filters
Journal ArticleDOI
Lawrence R. Rabiner1
01 Feb 1989
TL;DR: In this paper, the authors provide an overview of the basic theory of hidden Markov models (HMMs) as originated by L.E. Baum and T. Petrie (1966) and give practical details on methods of implementation of the theory along with a description of selected applications of HMMs to distinct problems in speech recognition.
Abstract: This tutorial provides an overview of the basic theory of hidden Markov models (HMMs) as originated by L.E. Baum and T. Petrie (1966) and gives practical details on methods of implementation of the theory along with a description of selected applications of the theory to distinct problems in speech recognition. Results from a number of original sources are combined to provide a single source of acquiring the background required to pursue further this area of research. The author first reviews the theory of discrete Markov chains and shows how the concept of hidden states, where the observation is a probabilistic function of the state, can be used effectively. The theory is illustrated with two simple examples, namely coin-tossing, and the classic balls-in-urns system. Three fundamental problems of HMMs are noted and several practical techniques for solving these problems are given. The various types of HMMs that have been studied, including ergodic as well as left-right models, are described. >

21,819 citations

Book
03 Oct 1988
TL;DR: This chapter discusses two Dimensional Systems and Mathematical Preliminaries and their applications in Image Analysis and Computer Vision, as well as image reconstruction from Projections and image enhancement.
Abstract: Introduction. 1. Two Dimensional Systems and Mathematical Preliminaries. 2. Image Perception. 3. Image Sampling and Quantization. 4. Image Transforms. 5. Image Representation by Stochastic Models. 6. Image Enhancement. 7. Image Filtering and Restoration. 8. Image Analysis and Computer Vision. 9. Image Reconstruction From Projections. 10. Image Data Compression.

8,504 citations

Journal ArticleDOI
01 Nov 1981
TL;DR: In this paper, a summary of many of the new techniques developed in the last two decades for spectrum analysis of discrete time series is presented, including classical periodogram, classical Blackman-Tukey, autoregressive (maximum entropy), moving average, autotegressive-moving average, maximum likelihood, Prony, and Pisarenko methods.
Abstract: A summary of many of the new techniques developed in the last two decades for spectrum analysis of discrete time series is presented in this tutorial. An examination of the underlying time series model assumed by each technique serves as the common basis for understanding the differences among the various spectrum analysis approaches. Techniques discussed include the classical periodogram, classical Blackman-Tukey, autoregressive (maximum entropy), moving average, autotegressive-moving average, maximum likelihood, Prony, and Pisarenko methods. A summary table in the text provides a concise overview for all methods, including key references and appropriate equations for computation of each spectral estimate.

2,941 citations

Book
01 Jan 1996
TL;DR: The author explains the development of the Huffman Coding Algorithm and some of the techniques used in its implementation, as well as some of its applications, including Image Compression, which is based on the JBIG standard.
Abstract: Preface 1 Introduction 1.1 Compression Techniques 1.1.1 Lossless Compression 1.1.2 Lossy Compression 1.1.3 Measures of Performance 1.2 Modeling and Coding 1.3 Organization of This Book 1.4 Summary 1.5 Projects and Problems 2 Mathematical Preliminaries 2.1 Overview 2.2 A Brief Introduction to Information Theory 2.3 Models 2.3.1 Physical Models 2.3.2 Probability Models 2.3.3. Markov Models 2.3.4 Summary 2.5 Projects and Problems 3 Huffman Coding 3.1 Overview 3.2 "Good" Codes 3.3. The Huffman Coding Algorithm 3.3.1 Minimum Variance Huffman Codes 3.3.2 Length of Huffman Codes 3.3.3 Extended Huffman Codes 3.4 Nonbinary Huffman Codes 3.5 Adaptive Huffman Coding 3.5.1 Update Procedure 3.5.2 Encoding Procedure 3.5.3 Decoding Procedure 3.6 Applications of Huffman Coding 3.6.1 Lossless Image Compression 3.6.2 Text Compression 3.6.3 Audio Compression 3.7 Summary 3.8 Projects and Problems 4 Arithmetic Coding 4.1 Overview 4.2 Introduction 4.3 Coding a Sequence 4.3.1 Generating a Tag 4.3.2 Deciphering the Tag 4.4 Generating a Binary Code 4.4.1 Uniqueness and Efficiency of the Arithmetic Code 4.4.2 Algorithm Implementation 4.4.3 Integer Implementation 4.5 Comparison of Huffman and Arithmetic Coding 4.6 Applications 4.6.1 Bi-Level Image Compression-The JBIG Standard 4.6.2 Image Compression 4.7 Summary 4.8 Projects and Problems 5 Dictionary Techniques 5.1 Overview 5.2 Introduction 5.3 Static Dictionary 5.3.1 Diagram Coding 5.4 Adaptive Dictionary 5.4.1 The LZ77 Approach 5.4.2 The LZ78 Approach 5.5 Applications 5.5.1 File Compression-UNIX COMPRESS 5.5.2 Image Compression-the Graphics Interchange Format (GIF) 5.5.3 Compression over Modems-V.42 bis 5.6 Summary 5.7 Projects and Problems 6 Lossless Image Compression 6.1 Overview 6.2 Introduction 6.3 Facsimile Encoding 6.3.1 Run-Length Coding 6.3.2 CCITT Group 3 and 4-Recommendations T.4 and T.6 6.3.3 Comparison of MH, MR, MMR, and JBIG 6.4 Progressive Image Transmission 6.5 Other Image Compression Approaches 6.5.1 Linear Prediction Models 6.5.2 Context Models 6.5.3 Multiresolution Models 6.5.4 Modeling Prediction Errors 6.6 Summary 6.7 Projects and Problems 7 Mathematical Preliminaries 7.1 Overview 7.2 Introduction 7.3 Distortion Criteria 7.3.1 The Human Visual System 7.3.2 Auditory Perception 7.4 Information Theory Revisted 7.4.1 Conditional Entropy 7.4.2 Average Mutual Information 7.4.3 Differential Entropy 7.5 Rate Distortion Theory 7.6 Models 7.6.1 Probability Models 7.6.2 Linear System Models 7.6.3 Physical Models 7.7 Summary 7.8 Projects and Problems 8 Scalar Quantization 8.1 Overview 8.2 Introduction 8.3 The Quantization Problem 8.4 Uniform Quantizer 8.5 Adaptive Quantization 8.5.1 Forward Adaptive Quantization 8.5.2 Backward Adaptive Quantization 8.6 Nonuniform Quantization 8.6.1 pdf-Optimized Quantization 8.6.2 Companded Quantization 8.7 Entropy-Coded Quantization 8.7.1 Entropy Coding of Lloyd-Max Quantizer Outputs 8.7.2 Entropy-Constrained Quantization 8.7.3 High-Rate Optimum Quantization 8.8 Summary 8.9 Projects and Problems 9 Vector Quantization 9.1 Overview 9.2 Introduction 9.3 Advantages of Vector Quantization over Scalar Quantization 9.4 The Linde-Buzo-Gray Algorithm 9.4.1 Initializing the LBG Algorithm 9.4.2 The Empty Cell Problem 9.4.3 Use of LBG for Image Compression 9.5 Tree-Structured Vector Quantizers 9.5.1 Design of Tree-Structured Vector Quantizers 9.6 Structured Vector Quantizers 9.6.1 Pyramid Vector Quantization 9.6.2 Polar and Spherical Vector Quantizers 9.6.3 Lattice Vector Quantizers 9.7 Variations on the Theme 9.7.1 Gain-Shape Vector Quantization 9.7.2 Mean-Removed Vector Quantization 9.7.3 Classified Vector Quantization 9.7.4 Multistage Vector Quantization 9.7.5 Adaptive Vector Quantization 9.8 Summary 9.9 Projects and Problems 10 Differential Encoding 10.1 Overview 10.2 Introduction 10.3 The Basic Algorithm 10.4 Prediction in DPCM 10.5 Adaptive DPCM (ADPCM) 10.5.1 Adaptive Quantization in DPCM 10.5.2 Adaptive Prediction in DPCM 10.6 Delta Modulation 10.6.1 Constant Factor Adaptive Delta Modulation (CFDM) 10.6.2 Continuously Variable Slope Delta Modulation 10.7 Speech Coding 10.7.1 G.726 10.8 Summary 10.9 Projects and Problems 11 Subband Coding 11.1 Overview 11.2 Introduction 11.3 The Frequency Domain and Filtering 11.3.1 Filters 11.4 The Basic Subband Coding Algorithm 11.4.1 Bit Allocation 11.5 Application to Speech Coding-G.722 11.6 Application to Audio Coding-MPEG Audio 11.7 Application to Image Compression 11.7.1 Decomposing an Image 11.7.2 Coding the Subbands 11.8 Wavelets 11.8.1 Families of Wavelets 11.8.2 Wavelets and Image Compression 11.9 Summary 11.10 Projects and Problems 12 Transform Coding 12.1 Overview 12.2 Introduction 12.3 The Transform 12.4 Transforms of Interest 12.4.1 Karhunen-Loeve Transform 12.4.2 Discrete Cosine Transform 12.4.3 Discrete Sine Transform 12.4.4 Discrete Walsh-Hadamard Transform 12.5 Quantization and Coding of Transform Coefficients 12.6 Application to Image Compression-JPEG 12.6.1 The Transform 12.6.2 Quantization 12.6.3 Coding 12.7 Application to Audio Compression 12.8 Summary 12.9 Projects and Problems 13 Analysis/Synthesis Schemes 13.1 Overview 13.2 Introduction 13.3 Speech Compression 13.3.1 The Channel Vocoder 13.3.2 The Linear Predictive Coder (Gov.Std.LPC-10) 13.3.3 Code Excited Linear Prediction (CELP) 13.3.4 Sinusoidal Coders 13.4 Image Compression 13.4.1 Fractal Compression 13.5 Summary 13.6 Projects and Problems 14 Video Compression 14.1 Overview 14.2 Introduction 14.3 Motion Compensation 14.4 Video Signal Representation 14.5 Algorithms for Videoconferencing and Videophones 14.5.1 ITU_T Recommendation H.261 14.5.2 Model-Based Coding 14.6 Asymmetric Applications 14.6.1 The MPEG Video Standard 14.7 Packet Video 14.7.1 ATM Networks 14.7.2 Compression Issues in ATM Networks 14.7.3 Compression Algorithms for Packet Video 14.8 Summary 14.9 Projects and Problems A Probability and Random Processes A.1 Probability A.2 Random Variables A.3 Distribution Functions A.4 Expectation A.5 Types of Distribution A.6 Stochastic Process A.7 Projects and Problems B A Brief Review of Matrix Concepts B.1 A Matrix B.2 Matrix Operations C Codes for Facsimile Encoding D The Root Lattices Bibliography Index

2,311 citations


Cites background from "Linear prediction: A tutorial revie..."

  • ...Makhoul [244], which appeared in the April 1975 issue of the Proceedings of the IEEE....

    [...]

Journal ArticleDOI
01 Aug 1997
TL;DR: This paper provides a comprehensive and detailed treatment of different beam-forming schemes, adaptive algorithms to adjust the required weighting on antennas, direction-of-arrival estimation methods-including their performance comparison-and effects of errors on the performance of an array system, as well as schemes to alleviate them.
Abstract: Array processing involves manipulation of signals induced on various antenna elements. Its capabilities of steering nulls to reduce cochannel interferences and pointing independent beams toward various mobiles, as well as its ability to provide estimates of directions of radiating sources, make it attractive to a mobile communications system designer. Array processing is expected to play an important role in fulfilling the increased demands of various mobile communications services. Part I of this paper showed how an array could be utilized in different configurations to improve the performance of mobile communications systems, with references to various studies where feasibility of apt array system for mobile communications is considered. This paper provides a comprehensive and detailed treatment of different beam-forming schemes, adaptive algorithms to adjust the required weighting on antennas, direction-of-arrival estimation methods-including their performance comparison-and effects of errors on the performance of an array system, as well as schemes to alleviate them. This paper brings together almost all aspects of array signal processing.

2,169 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a new estimate minimum information theoretical criterion estimate (MAICE) is introduced for the purpose of statistical identification, which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure.
Abstract: The history of the development of statistical hypothesis testing in time series analysis is reviewed briefly and it is pointed out that the hypothesis testing procedure is not adequately defined as the procedure for statistical model identification. The classical maximum likelihood estimation procedure is reviewed and a new estimate minimum information theoretical criterion (AIC) estimate (MAICE) which is designed for the purpose of statistical identification is introduced. When there are several competing models the MAICE is defined by the model and the maximum likelihood estimates of the parameters which give the minimum of AIC defined by AIC = (-2)log-(maximum likelihood) + 2(number of independently adjusted parameters within the model). MAICE provides a versatile procedure for statistical model identification which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure. The practical utility of MAICE in time series analysis is demonstrated with some numerical examples.

47,133 citations

Proceedings Article
01 Jan 1973
TL;DR: The classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion to provide answers to many practical problems of statistical model fitting.
Abstract: In this paper it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion. This observation shows an extension of the principle to provide answers to many practical problems of statistical model fitting.

18,539 citations

Book ChapterDOI
01 Jan 1973
TL;DR: In this paper, it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion.
Abstract: In this paper it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion. This observation shows an extension of the principle to provide answers to many practical problems of statistical model fitting.

15,424 citations

Journal ArticleDOI
TL;DR: The decomposition of A is called the singular value decomposition (SVD) and the diagonal elements of ∑ are the non-negative square roots of the eigenvalues of A T A; they are called singular values.
Abstract: Let A be a real m×n matrix with m≧n. It is well known (cf. [4]) that $$A = U\sum {V^T}$$ (1) where $${U^T}U = {V^T}V = V{V^T} = {I_n}{\text{ and }}\sum {\text{ = diag(}}{\sigma _{\text{1}}}{\text{,}} \ldots {\text{,}}{\sigma _n}{\text{)}}{\text{.}}$$ The matrix U consists of n orthonormalized eigenvectors associated with the n largest eigenvalues of AA T , and the matrix V consists of the orthonormalized eigenvectors of A T A. The diagonal elements of ∑ are the non-negative square roots of the eigenvalues of A T A; they are called singular values. We shall assume that $${\sigma _1} \geqq {\sigma _2} \geqq \cdots \geqq {\sigma _n} \geqq 0.$$ Thus if rank(A)=r, σ r+1 = σ r+2=⋯=σ n = 0. The decomposition (1) is called the singular value decomposition (SVD).

3,036 citations