scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Linear stability analysis of a surfactant-laden shear-imposed falling film

09 May 2019-Physics of Fluids (AIP Publishing LLCAIP Publishing)-Vol. 31, Iss: 5, pp 054103
TL;DR: Wei et al. as discussed by the authors studied the long-wave instability of a shear-imposed liquid flow down an inclined plane, where the free surface of the fluid is covered by an insoluble surfactant.
Abstract: A study of the linear stability analysis of a shear-imposed fluid flowing down an inclined plane is performed when the free surface of the fluid is covered by an insoluble surfactant. The purpose is to extend the earlier work [H. H. Wei, “Effect of surfactant on the long-wave instability of a shear-imposed liquid flow down an inclined plane,” Phys. Fluids 17, 012103 (2005)] for disturbances of arbitrary wavenumbers. The Orr-Sommerfeld boundary value problem is formulated and solved numerically based on the Chebyshev spectral collocation method. Two temporal modes, the so-called surface mode and surfactant mode, are detected in the long-wave regime. The surfactant mode becomes unstable when the Peclet number exceeds its critical value. In fact, the instability of the surfactant mode occurs on account for the imposed shear stress. Energy budget analysis predicts that the kinetic energy of the infinitesimal disturbance grows with the imposed shear stress. On the other hand, the numerical results reveal that both surface and surfactant modes can be destabilized by increasing the value of the imposed shear stress. Similarly, it is demonstrated that the shear mode becomes more unstable in the presence of the imposed shear stress. However, it can be stabilized by incorporating the insoluble surfactant at the free surface. Apparently, it seems that inertia does not play any role in the surfactant mode in the moderate Reynolds number regime. Furthermore, the competition between surface and shear modes is discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a study of optimal temporal and spatial disturbance growths for three-dimensional viscous incompressible fluid flows with slippery walls was carried out under the framework of normal velocity and normal vorticity formulations, where a Chebyshev spectral collocation method was used to solve the governing equations numerically.
Abstract: A study of optimal temporal and spatial disturbance growths is carried out for three-dimensional viscous incompressible fluid flows with slippery walls. The non-modal temporal stability analysis is performed under the framework of normal velocity and normal vorticity formulations. A Chebyshev spectral collocation method is used to solve the governing equations numerically. For a free surface flow over a slippery inclined plane, the maximum temporal energy amplification intensifies with the effect of wall slip for the spanwise perturbation, but it attenuates with the wall slip when perturbation considers both streamwise and spanwise wavenumbers. It is found that the boundary for the regime of transient growth appears far ahead of the boundary for the regime of exponential growth, which raises a question on the critical Reynolds number for the shear mode predicted from the eigenvalue analysis. Furthermore, the eigenvalue analysis or the modal stability analysis reveals that the unstable region for the shear mode decays rapidly in the presence of wall slip, which is followed by the successive amplification of the critical Reynolds number for the shear mode and ensures the stabilizing effect of slip length on the shear mode. On the other hand, for a channel flow with slippery bounding walls, the maximum spatial energy amplification intensifies with the effect of wall slip in the absence of angular frequency, but it reduces with the wall slip if the angular frequency is present in the disturbance. Furthermore, the maximum spatial energy disturbance growth can be achieved if the disturbance excludes the angular frequency. Furthermore, it is observed that the angular frequency plays an essential role in the pattern formation of optimal response. In addition, the pseudo-resonance phenomenon occurs due to external temporal and spatially harmonic forcings, where the pseudo-resonance peak is much higher than the resonance peak.

19 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated the effect of odd viscosity on the surface and shear wave dynamics of a falling incompressible viscous fluid and found that the surface wave and sheer instabilities can be weakened by an odd visco-coverage coefficient.
Abstract: Abstract The aim of the present study is to investigate the linear and nonlinear wave dynamics of a falling incompressible viscous fluid when the fluid undergoes an effect of odd viscosity. In fact, such an effect arises in classical fluids when the time-reversal symmetry is broken. The motivation to study this dynamics was raised by recent studies (Ganeshan & Abanov, Phys. Rev. Fluids, vol. 2, 2017, p. 094101; Kirkinis & Andreev, J. Fluid Mech., vol. 878, 2019, pp. 169–189) where the odd viscosity coefficient suppresses thermocapillary instability. Here, we explore the linear surface wave and shear wave dynamics for the isothermal case by solving the Orr–Sommerfeld eigenvalue problem numerically with the aid of the Chebyshev spectral collocation method. It is found that surface and shear instabilities can be weakened by the odd viscosity coefficient. Furthermore, the growth rate of the wavepacket corresponding to the linear spatio-temporal response is reduced as long as the odd viscosity coefficient increases. In addition, a coupled system of a two-equation model is derived in terms of the fluid layer thickness $h(x,t)$ and the flow rate $q(x,t)$. The nonlinear travelling wave solution of the two-equation model reveals the attenuation of maximum amplitude and speed in the presence of an odd viscosity coefficient, which ensures the delay of transition from the primary parallel flow with a flat surface to secondary flow generated through the nonlinear wave interactions. This physical phenomenon is further corroborated by performing a nonlinear spatio-temporal simulation when a harmonic forcing is applied at the inlet.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the linear instability of a two-layer falling film over an inclined slippery wall is analyzed under the influence of external shear, which is imposed on the top surface of the flow.
Abstract: The linear instability of a surfactant-laden two-layer falling film over an inclined slippery wall is analyzed under the influence of external shear, which is imposed on the top surface of the flow. The free surface of the flow and the interface among the fluids are contaminated by insoluble surfactants. Dynamics of the fluid layers are governed by the Navier–Stokes equations, and the surfactant transport equations regulate the motion of the insoluble surfactants at the interface and free surface. Instability mechanisms are compared by imposing the external shear along and opposite to the flow direction. A coupled Orr–Sommerfeld system of equations is derived using the perturbation technique and normal mode analysis. The eigenmodes corresponding to the Orr–Sommerfeld eigenvalue problem are obtained by employing the spectral collocation method. The numerical results imply that the stronger external shear destabilizes the interface mode instability. However, a stabilizing impact of the external shear on the surface mode is noticed if the shear is imposed in the flow direction, which is in contrast to the role of imposed external shear on the surface mode for a surfactant-laden single layer falling film. Furthermore, in the presence of strong imposed shear, the overall stabilization of the surface mode by wall velocity slip for the stratified two-fluid flow is also contrary to that of the single fluid case. The interface mode behaves differently in the two zones at the moderate Reynolds numbers, and higher external shear magnifies the interfacial instability in both zones. An opposite trend is observed in the case of surface instability. Moreover, the impression of shear mode on the primary instability is analyzed in the high Reynolds number regime with sufficiently low inclination angle. Under such configuration, dominance of the shear mode over the surface mode is observed due to the weaker impact of the gravitational force on the surface instability. The shear mode can also be stabilized by applying the external shear in the counter direction of the streamwise flow. Conclusively, the extra imposed shear on the stratified two-layer falling film plays an active role in the control of the attitude of the instabilities.

11 citations


Cites background from "Linear stability analysis of a surf..."

  • ...Thus, in the case of considered two-layer flow, the influence of imposed shear on the surface mode is exactly opposite to that for the shear imposed surfactant laden single layer falling film ([37]), where the surface unstable mode bandwidth increases/decreases for positive/negative values of external shear rate (see Fig....

    [...]

  • ...1, and (b) Stability boundaries for limiting single fluid falling film with imposed shear ([37])....

    [...]

  • ...Recently, the work of [30] is extended to an arbitrary wavenumber region by [37] and they observed that the surface mode stabilizes on applying the external shear opposite to the flow direction....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a linear stability analysis of a surfactant-laden viscoelastic liquid flowing down a slippery inclined plane is carried out under the framework of Orr-Sommerfeld type eigenvalue problem.
Abstract: A study of linear stability analysis of a surfactant-laden viscoelastic liquid flowing down a slippery inclined plane is carried out under the framework of Orr–Sommerfeld type eigenvalue problem. It is assumed that the viscoelastic liquid satisfies the rheological property of Walters' liquid B ″. The Orr–Sommerfeld type eigenvalue problem is solved analytically and numerically based on the long-wave analysis and Chebyshev spectral collocation method, respectively. The long-wave analysis predicts the existence of two temporal modes, the so-called surface mode and surfactant mode, where the first order temporal growth rate for the surfactant mode is zero. However, the first order temporal growth rate for the surface mode is non-zero, which leads to the critical Reynolds number for the surface mode. Further, it is found that the critical Reynolds number for the surface mode reduces with the increasing value of viscoelastic coefficient and ensures the destabilizing effect of viscoelastic coefficient on the primary instability induced by the surface mode in the long-wave regime. However, the numerical result demonstrates that the viscoelastic coefficient has a non-trivial stabilizing effect on the surface mode when the Reynolds number is far away from the onset of instability. Further, if the Reynolds number is high and the inclination angle is sufficiently low, there exists another mode, namely the shear mode. The unstable region induced by the shear mode magnifies significantly even for the weak effect of viscoelastic coefficient and makes the transition faster from stable to unstable flow configuration for the viscoelastic liquid. Moreover, the slip length exhibits a dual role in the surface mode as reported for the Newtonian liquid. But it exhibits only a stabilizing effect on the shear mode. In addition, it is found that the Marangoni number also exhibits a dual nature on the primary instability induced by the surface mode in contrast to the result of the Newtonian liquid.

11 citations

References
More filters
Book
28 Dec 2000
TL;DR: In this article, the authors present an approach to the Viscous Initial Value Problem with the objective of finding the optimal growth rate and the optimal response to the initial value problem.
Abstract: 1 Introduction and General Results.- 1.1 Introduction.- 1.2 Nonlinear Disturbance Equations.- 1.3 Definition of Stability and Critical Reynolds Numbers.- 1.3.1 Definition of Stability.- 1.3.2 Critical Reynolds Numbers.- 1.3.3 Spatial Evolution of Disturbances.- 1.4 The Reynolds-Orr Equation.- 1.4.1 Derivation of the Reynolds-Orr Equation.- 1.4.2 The Need for Linear Growth Mechanisms.- I Temporal Stability of Parallel Shear Flows.- 2 Linear Inviscid Analysis.- 2.1 Inviscid Linear Stability Equations.- 2.2 Modal Solutions.- 2.2.1 General Results.- 2.2.2 Dispersive Effects and Wave Packets.- 2.3 Initial Value Problem.- 2.3.1 The Inviscid Initial Value Problem.- 2.3.2 Laplace Transform Solution.- 2.3.3 Solutions to the Normal Vorticity Equation.- 2.3.4 Example: Couette Flow.- 2.3.5 Localized Disturbances.- 3 Eigensolutions to the Viscous Problem.- 3.1 Viscous Linear Stability Equations.- 3.1.1 The Velocity-Vorticity Formulation.- 3.1.2 The Orr-Sommerfeld and Squire Equations.- 3.1.3 Squire's Transformation and Squire's Theorem.- 3.1.4 Vector Modes.- 3.1.5 Pipe Flow.- 3.2 Spectra and Eigenfunctions.- 3.2.1 Discrete Spectrum.- 3.2.2 Neutral Curves.- 3.2.3 Continuous Spectrum.- 3.2.4 Asymptotic Results.- 3.3 Further Results on Spectra and Eigenfunctions.- 3.3.1 Adjoint Problem and Bi-Orthogonality Condition.- 3.3.2 Sensitivity of Eigenvalues.- 3.3.3 Pseudo-Eigenvalues.- 3.3.4 Bounds on Eigenvalues.- 3.3.5 Dispersive Effects and Wave Packets.- 4 The Viscous Initial Value Problem.- 4.1 The Viscous Initial Value Problem.- 4.1.1 Motivation.- 4.1.2 Derivation of the Disturbance Equations.- 4.1.3 Disturbance Measure.- 4.2 The Forced Squire Equation and Transient Growth.- 4.2.1 Eigenfunction Expansion.- 4.2.2 Blasius Boundary Layer Flow.- 4.3 The Complete Solution to the Initial Value Problem.- 4.3.1 Continuous Formulation.- 4.3.2 Discrete Formulation.- 4.4 Optimal Growth.- 4.4.1 The Matrix Exponential.- 4.4.2 Maximum Amplification.- 4.4.3 Optimal Disturbances.- 4.4.4 Reynolds Number Dependence of Optimal Growth.- 4.5 Optimal Response and Optimal Growth Rate.- 4.5.1 The Forced Problem and the Resolvent.- 4.5.2 Maximum Growth Rate.- 4.5.3 Response to Stochastic Excitation.- 4.6 Estimates of Growth.- 4.6.1 Bounds on Matrix Exponential.- 4.6.2 Conditions for No Growth.- 4.7 Localized Disturbances.- 4.7.1 Choice of Initial Disturbances.- 4.7.2 Examples.- 4.7.3 Asymptotic Behavior.- 5 Nonlinear Stability.- 5.1 Motivation.- 5.1.1 Introduction.- 5.1.2 A Model Problem.- 5.2 Nonlinear Initial Value Problem.- 5.2.1 The Velocity-Vorticity Equations.- 5.3 Weakly Nonlinear Expansion.- 5.3.1 Multiple-Scale Analysis.- 5.3.2 The Landau Equation.- 5.4 Three-Wave Interactions.- 5.4.1 Resonance Conditions.- 5.4.2 Derivation of a Dynamical System.- 5.4.3 Triad Interactions.- 5.5 Solutions to the Nonlinear Initial Value Problem.- 5.5.1 Formal Solutions to the Nonlinear Initial Value Problem.- 5.5.2 Weakly Nonlinear Solutions and the Center Manifold.- 5.5.3 Nonlinear Equilibrium States.- 5.5.4 Numerical Solutions for Localized Disturbances.- 5.6 Energy Theory.- 5.6.1 The Energy Stability Problem.- 5.6.2 Additional Constraints.- II Stability of Complex Flows and Transition.- 6 Temporal Stability of Complex Flows.- 6.1 Effect of Pressure Gradient and Crossflow.- 6.1.1 Falkner-Skan (FS) Boundary Layers.- 6.1.2 Falkner-Skan-Cooke (FSC) Boundary layers.- 6.2 Effect of Rotation and Curvature.- 6.2.1 Curved Channel Flow.- 6.2.2 Rotating Channel Flow.- 6.2.3 Combined Effect of Curvature and Rotation.- 6.3 Effect of Surface Tension.- 6.3.1 Water Table Flow.- 6.3.2 Energy and the Choice of Norm.- 6.3.3 Results.- 6.4 Stability of Unsteady Flow.- 6.4.1 Oscillatory Flow.- 6.4.2 Arbitrary Time Dependence.- 6.5 Effect of Compressibility.- 6.5.1 The Compressible Initial Value Problem.- 6.5.2 Inviscid Instabilities and Rayleigh's Criterion.- 6.5.3 Viscous Instability.- 6.5.4 Nonmodal Growth.- 7 Growth of Disturbances in Space.- 7.1 Spatial Eigenvalue Analysis.- 7.1.1 Introduction.- 7.1.2 Spatial Spectra.- 7.1.3 Gaster's Transformation.- 7.1.4 Harmonic Point Source.- 7.2 Absolute Instability.- 7.2.1 The Concept of Absolute Instability.- 7.2.2 Briggs' Method.- 7.2.3 The Cusp Map.- 7.2.4 Stability of a Two-Dimensional Wake.- 7.2.5 Stability of Rotating Disk Flow.- 7.3 Spatial Initial Value Problem.- 7.3.1 Primitive Variable Formulation.- 7.3.2 Solution of the Spatial Initial Value Problem.- 7.3.3 The Vibrating Ribbon Problem.- 7.4 Nonparallel Effects.- 7.4.1 Asymptotic Methods.- 7.4.2 Parabolic Equations for Steady Disturbances.- 7.4.3 Parabolized Stability Equations (PSE).- 7.4.4 Spatial Optimal Disturbances.- 7.4.5 Global Instability.- 7.5 Nonlinear Effects.- 7.5.1 Nonlinear Wave Interactions.- 7.5.2 Nonlinear Parabolized Stability Equations.- 7.5.3 Examples.- 7.6 Disturbance Environment and Receptivity.- 7.6.1 Introduction.- 7.6.2 Nonlocalized and Localized Receptivity.- 7.6.3 An Adjoint Approach to Receptivity.- 7.6.4 Receptivity Using Parabolic Evolution Equations.- 8 Secondary Instability.- 8.1 Introduction.- 8.2 Secondary Instability of Two-Dimensional Waves.- 8.2.1 Derivation of the Equations.- 8.2.2 Numerical Results.- 8.2.3 Elliptical Instability.- 8.3 Secondary Instability of Vortices and Streaks.- 8.3.1 Governing Equations.- 8.3.2 Examples of Secondary Instability of Streaks and Vortices.- 8.4 Eckhaus Instability.- 8.4.1 Secondary Instability of Parallel Flows.- 8.4.2 Parabolic Equations for Spatial Eckhaus Instability.- 9 Transition to Turbulence.- 9.1 Transition Scenarios and Thresholds.- 9.1.1 Introduction.- 9.1.2 Three Transition Scenarios.- 9.1.3 The Most Likely Transition Scenario.- 9.1.4 Conclusions.- 9.2 Breakdown of Two-Dimensional Waves.- 9.2.1 The Zero Pressure Gradient Boundary Layer.- 9.2.2 Breakdown of Mixing Layers.- 9.3 Streak Breakdown.- 9.3.1 Streaks Forced by Blowing or Suction.- 9.3.2 Freestream Turbulence.- 9.4 Oblique Transition.- 9.4.1 Experiments and Simulations in Blasius Flow.- 9.4.2 Transition in a Separation Bubble.- 9.4.3 Compressible Oblique Transition.- 9.5 Transition of Vortex-Dominated Flows.- 9.5.1 Transition in Flows with Curvature.- 9.5.2 Direct Numerical Simulations of Secondary Instability of Crossflow Vortices.- 9.5.3 Experimental Investigations of Breakdown of Cross-flow Vortices.- 9.6 Breakdown of Localized Disturbances.- 9.6.1 Experimental Results for Boundary Layers.- 9.6.2 Direct Numerical Simulations in Boundary Layers.- 9.7 Transition Modeling.- 9.7.1 Low-Dimensional Models of Subcritical Transition.- 9.7.2 Traditional Transition Prediction Models.- 9.7.3 Transition Prediction Models Based on Nonmodal Growth.- 9.7.4 Nonlinear Transition Modeling.- III Appendix.- A Numerical Issues and Computer Programs.- A.1 Global versus Local Methods.- A.2 Runge-Kutta Methods.- A.3 Chebyshev Expansions.- A.4 Infinite Domain and Continuous Spectrum.- A.5 Chebyshev Discretization of the Orr-Sommerfeld Equation.- A.6 MATLAB Codes for Hydrodynamic Stability Calculations.- A.7 Eigenvalues of Parallel Shear Flows.- B Resonances and Degeneracies.- B.1 Resonances and Degeneracies.- B.2 Orr-Sommerfeld-Squire Resonance.- C Adjoint of the Linearized Boundary Layer Equation.- C.1 Adjoint of the Linearized Boundary Layer Equation.- D Selected Problems on Part I.

2,215 citations

Journal ArticleDOI
TL;DR: In this article, the Orr-Sommerfeld equation is solved numerically using expansions in Chebyshev polynomials and the QR matrix eigenvalue algorithm.
Abstract: The Orr-Sommerfeld equation is solved numerically using expansions in Chebyshev polynomials and the QR matrix eigenvalue algorithm. It is shown that results of great accuracy are obtained very economically. The method is applied to the stability of plane Poiseuille flow; it is found that the critical Reynolds number is 5772·22. It is explained why expansions in Chebyshev polynomials are better suited to the solution of hydrodynamic stability problems than expansions in other, seemingly more relevant, sets of orthogonal functions.

1,365 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that a class of undamped waves exists for all finite values of the Reynolds number R, and that the rates of amplification of unstable waves become very small when R is made fairly small, and their wavelengths to become very large; this provides a satisfactory explanation for the apparent absence of waves in some experimental observations.
Abstract: This paper deals theoretically with a problem of hydrodynamic stability characterized by small values of the Reynolds number R. The primary flow whose stability is examined consists of a uniform laminar stream of viscous liquid running down an inclined plane under the action of gravity, being bounded on one side by a free surface influenced by surface tension. The problem thus has a direct bearing on the properties of thin liquid films such as have important uses in chemical engineering.Numerous experiments in the past have shown that in flow down a wall the stream is noticeably agitated by waves except when R is quite small; on a vertical water film, for instance, waves may be observed until R is reduced to some value rather less than 10. The present treatment is accordingly based on methods of approximation suited to fairly low values of R, and thereby avoids the severe mathematical difficulties usual in stability problems at high R. The formulation of the problem resembles that given by Yih (1954); but the method of solution differs from his, and the respective results are in conflict. In particular, there is dis-agreement over the matter of the stability of a strictly vertical stream at very small R. In contrast with the previous conclusions, it is shown here that the flow is always unstable: that is, a class of undamped waves exists for all finite values of R. However, the rates of amplification of unstable waves are shown to become very small when R is made fairly small, and their wavelengths to become very large; this provides a satisfactory explanation for the apparent absence of waves in some experimental observations, and also for the wide scatter among existing estimates of the ‘quasi-critical’ value of R below which waves are undetectable. In view of the controversial nature of these results, emphasis is given to various points of agreement between the present work and the established theory of roll waves; the latter theory gives a clear picture of the physical mechanism of wave formation on gravitational flows, and in its light the results obtained here appear entirely reasonable.The conditions governing neutral stability are worked out to the third order in a parameter which is shown to be small; but a less accurate approximation is then justified as an adequate basis for an easily workable theory providing a ready check with experiment, This theory is used to predict the value of R at which observable waves should first develop on a vertical water film, and also the length and velocity of the waves. These three predictions are compared with the experimental results found by Binnie (1957), and are substantially confirmed.

904 citations

Journal ArticleDOI
TL;DR: In this paper, the stability of a liquid layer flowing down an inclined plane is investigated, and a new perturbation method is used to furnish information regarding stability of surface waves for three cases: the case of small wavenumbers, of small Reynolds numbers, and of large wavenifications.
Abstract: The stability of a liquid layer flowing down an inclined plane is investigated. A new perturbation method is used to furnish information regarding stability of surface waves for three cases: the case of small wavenumbers, of small Reynolds numbers, and of large wavenumbers. The results for small wavenumbers agree with Benjamin's result obtained by the use of power series expansion, and the results for the two other cases are new. The results for large wavenumbers, zero surface tension, and vertical plate contradict the tentative assertion of Benjamin. The three cases are then re‐examined for shear‐wave stability, and the results compared with those for confined plane Poiseuille flow. The comparison serves to indicate the vestiges of shear waves in the free‐surface flow, and to give a sense of unity in the understanding of the stability of both flows. The case of large wavenumbers also serves as a new example of the dual role of viscosity in stability phenomena.The topological features of the ci curves for...

851 citations

Journal ArticleDOI
TL;DR: A derivation of the convective diffusion equation for transport of a scalar quantity along a deforming interface is presented in this paper, where the direct contribution of interface deformation, giving rise to concentration variations as a result of local changes in interfacial area, is shown explicitly in a simple manner.
Abstract: A derivation of the convective‐diffusion equation for transport of a scalar quantity, e.g., surfactant, along a deforming interface is outlined. The direct contribution of interface deformation, giving rise to concentration variations as a result of local changes in interfacial area, is shown explicitly in a simple manner.

445 citations