scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Linking Image and Text with 2-Way Nets

01 Jul 2017-pp 1855-1865
TL;DR: In this paper, a bi-directional neural network architecture for matching vectors from two data sources is introduced, which employs two tied neural network channels that project the two views into a common, maximally correlated space using the Euclidean loss.
Abstract: Linking two data sources is a basic building block in numerous computer vision problems. Canonical Correlation Analysis (CCA) achieves this by utilizing a linear optimizer in order to maximize the correlation between the two views. Recent work makes use of non-linear models, including deep learning techniques, that optimize the CCA loss in some feature space. In this paper, we introduce a novel, bi-directional neural network architecture for the task of matching vectors from two data sources. Our approach employs two tied neural network channels that project the two views into a common, maximally correlated space using the Euclidean loss. We show a direct link between the correlation-based loss and Euclidean loss, enabling the use of Euclidean loss for correlation maximization. To overcome common Euclidean regression optimization problems, we modify well-known techniques to our problem, including batch normalization and dropout. We show state of the art results on a number of computer vision matching tasks including MNIST image matching and sentence-image matching on the Flickr8k, Flickr30k and COCO datasets.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
Kuang-Huei Lee1, Xi Chen1, Gang Hua1, Houdong Hu1, Xiaodong He 
08 Sep 2018
TL;DR: In this article, Liu et al. proposed a stacked cross-attention to discover the full latent alignments using both image regions and words in a sentence as context and infer image-text similarity, achieving state-of-the-art results on the MS-COCO and Flickr30K datasets.
Abstract: In this paper, we study the problem of image-text matching. Inferring the latent semantic alignment between objects or other salient stuff (e.g. snow, sky, lawn) and the corresponding words in sentences allows to capture fine-grained interplay between vision and language, and makes image-text matching more interpretable. Prior work either simply aggregates the similarity of all possible pairs of regions and words without attending differentially to more and less important words or regions, or uses a multi-step attentional process to capture limited number of semantic alignments which is less interpretable. In this paper, we present Stacked Cross Attention to discover the full latent alignments using both image regions and words in a sentence as context and infer image-text similarity. Our approach achieves the state-of-the-art results on the MS-COCO and Flickr30K datasets. On Flickr30K, our approach outperforms the current best methods by 22.1% relatively in text retrieval from image query, and 18.2% relatively in image retrieval with text query (based on Recall@1). On MS-COCO, our approach improves sentence retrieval by 17.8% relatively and image retrieval by 16.6% relatively (based on Recall@1 using the 5K test set). Code has been made available at: (https://github.com/kuanghuei/SCAN).

630 citations

Posted Content
TL;DR: A simple change to common loss functions used for multi-modal embeddings, inspired by hard negative mining, the use of hard negatives in structured prediction, and ranking loss functions, is introduced, which yields significant gains in retrieval performance.
Abstract: We present a new technique for learning visual-semantic embeddings for cross-modal retrieval. Inspired by hard negative mining, the use of hard negatives in structured prediction, and ranking loss functions, we introduce a simple change to common loss functions used for multi-modal embeddings. That, combined with fine-tuning and use of augmented data, yields significant gains in retrieval performance. We showcase our approach, VSE++, on MS-COCO and Flickr30K datasets, using ablation studies and comparisons with existing methods. On MS-COCO our approach outperforms state-of-the-art methods by 8.8% in caption retrieval and 11.3% in image retrieval (at R@1).

623 citations

Proceedings ArticleDOI
Kunpeng Li1, Yulun Zhang1, Kai Li1, Yuanyuan Li1, Yun Fu1 
01 Oct 2019
TL;DR: A simple and interpretable reasoning model to generate visual representation that captures key objects and semantic concepts of a scene that outperforms the current best method for image retrieval and caption retrieval on MS-COCO and Flickr30K datasets.
Abstract: Image-text matching has been a hot research topic bridging the vision and language areas. It remains challenging because the current representation of image usually lacks global semantic concepts as in its corresponding text caption. To address this issue, we propose a simple and interpretable reasoning model to generate visual representation that captures key objects and semantic concepts of a scene. Specifically, we first build up connections between image regions and perform reasoning with Graph Convolutional Networks to generate features with semantic relationships. Then, we propose to use the gate and memory mechanism to perform global semantic reasoning on these relationship-enhanced features, select the discriminative information and gradually generate the representation for the whole scene. Experiments validate that our method achieves a new state-of-the-art for the image-text matching on MS-COCO and Flickr30K datasets. It outperforms the current best method by 6.8% relatively for image retrieval and 4.8% relatively for caption retrieval on MS-COCO (Recall@1 using 1K test set). On Flickr30K, our model improves image retrieval by 12.6% relatively and caption retrieval by 5.8% relatively (Recall@1).

393 citations

Journal ArticleDOI
TL;DR: In this article, a two-branch neural network is proposed to learn the similarity between image-sentence matching and visual grounding, which achieves high accuracies for phrase localization on the Flickr30K Entities dataset and for bi-directional imagesentence retrieval on Flickr30k and MSCOCO datasets.
Abstract: Image-language matching tasks have recently attracted a lot of attention in the computer vision field. These tasks include image-sentence matching, i.e., given an image query, retrieving relevant sentences and vice versa, and region-phrase matching or visual grounding, i.e., matching a phrase to relevant regions. This paper investigates two-branch neural networks for learning the similarity between these two data modalities. We propose two network structures that produce different output representations. The first one, referred to as an embedding network , learns an explicit shared latent embedding space with a maximum-margin ranking loss and novel neighborhood constraints. Compared to standard triplet sampling, we perform improved neighborhood sampling that takes neighborhood information into consideration while constructing mini-batches. The second network structure, referred to as a similarity network , fuses the two branches via element-wise product and is trained with regression loss to directly predict a similarity score. Extensive experiments show that our networks achieve high accuracies for phrase localization on the Flickr30K Entities dataset and for bi-directional image-sentence retrieval on Flickr30K and MSCOCO datasets.

391 citations

Posted Content
Kuang-Huei Lee1, Xi Chen1, Gang Hua1, Houdong Hu1, Xiaodong He 
TL;DR: Stacked Cross Attention to discover the full latent alignments using both image regions and words in sentence as context and infer the image-text similarity achieves the state-of-the-art results on the MS-COCO and Flickr30K datasets.
Abstract: In this paper, we study the problem of image-text matching. Inferring the latent semantic alignment between objects or other salient stuff (e.g. snow, sky, lawn) and the corresponding words in sentences allows to capture fine-grained interplay between vision and language, and makes image-text matching more interpretable. Prior work either simply aggregates the similarity of all possible pairs of regions and words without attending differentially to more and less important words or regions, or uses a multi-step attentional process to capture limited number of semantic alignments which is less interpretable. In this paper, we present Stacked Cross Attention to discover the full latent alignments using both image regions and words in a sentence as context and infer image-text similarity. Our approach achieves the state-of-the-art results on the MS-COCO and Flickr30K datasets. On Flickr30K, our approach outperforms the current best methods by 22.1% relatively in text retrieval from image query, and 18.2% relatively in image retrieval with text query (based on Recall@1). On MS-COCO, our approach improves sentence retrieval by 17.8% relatively and image retrieval by 16.6% relatively (based on Recall@1 using the 5K test set). Code has been made available at: this https URL.

315 citations

References
More filters
Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Journal Article
TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract: Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

33,597 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations

Book ChapterDOI
06 Sep 2014
TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Abstract: We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.

30,462 citations

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations