scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Lipid and polymer nanoparticles for drug delivery to bacterial biofilms

28 Sep 2014-Journal of Controlled Release (J Control Release)-Vol. 190, Iss: 190, pp 607-623
TL;DR: The majority of the discussed papers still present data on the in vitro anti-biofilm activity of nanoformulations, indicating that there is an urgent need for more in vivo studies in this field.
About: This article is published in Journal of Controlled Release.The article was published on 2014-09-28 and is currently open access. It has received 313 citations till now. The article focuses on the topics: Antimicrobial & Drug delivery.

Summary (2 min read)

1. Introduction

  • This allows the biofilm to respond cooperatively to environmental  changes  and  threats.
  • The  reason why  these  infections  are  hard  to  eradicate  is  twofold.
  • It  is  now  estimated that over 60% of bacterial  infections  in humans  involve biofilm formation. [17].
  • Furthermore, by  targeting  of  the  nanoparticles  to  the  biofilm,  a  high  dose  of  antimicrobial  agents  can  be  delivered  in the direct proximity of the bacterial cells, thereby maximizing therapeutic benefit  while reducing unwanted side effects.

2.1 Lipid nanoparticles

  • Due  to  their  versatility  and  biocompatibility,  liposomes  are  attractive  candidates  for  nanoparticle mediated drug delivery  in biofilms.
  • Fusion of these liposomes with the bacteria was also proven  by  a  combination  of  flow  cytometry,  lipid mixing,  TEM  and  immunochemistry  techniques  as  mentioned above. [36, 37].
  • It  is worth  noting  that  co‐encapsulation  of  other  antimicrobial  substances  together with  an  antibiotic into liposomes could improve the antimicrobial efficacy.
  • Also, longer contact times between the antibiotic and the biofilm bacteria have been suggested  to  be  responsible  for  the  increased  antimicrobial  effect.  [51,  52] DPPC:Chol:SA  DPPC:Chol:DD AB  DPPC:DC‐chol  /  Vancomycin  /  0.12  Cationi c  Yes ND ND Yes  ND  Targeting and  sustained  release  S. aureus [79].

2.2 Polymer and lipid‐polymer hybrid nanoparticles

  • In contrast to the various beneficial traits described above, the use of liposomes can also have  several disadvantages.
  • The  polymeric  particles  already  described  in  literature  are  typically  formed  from  poly(lactic‐co‐ glycolic) acid (PLGA) or chitosan or a mixture of PLGA and lipids to form so called lipid‐polymer  hybrid nanoparticles  (LPH).  [89, 90] PLGA  is a biocompatible and biodegradable copolymer of  lactic and glycolic acid and is FDA approved in various drug delivery systems. [91].
  • It was  therefore  concluded  that PLGA encapsulated  ciprofloxacin  is  more promising for the treatment of E. coli biofilms.
  • Chitosan  itself has antimicrobial activity by adsorption onto  the bacteria, causing aggregation  and  leakage  of  their  intracellular  content.
  • 2.3 Encapsulation efficiency Similar as for    liposomes, the encapsulation efficiency of antibiotics  in polymeric nanoparticles  determines how much antimicrobial agent can be delivered to the biofilm.

3 Targeted delivery to biofilms

  • Functionalizing drug delivery nanoparticles with targeting ligands could be beneficial to achieve  accumulation of the nanoparticles close to the bacterial cells and to promote close contact of  the nanocarrier with  the bacteria.
  • Targeting can also be beneficial  in environments with high  shear  forces,  such  as  the oral  cavity, where only  short exposure  times  can be  achieved  (e.g.  mouthwash).
  • A  distinction  can  be  made  between  specific  and  non‐specific  targeting.
  • Non‐ specific  targeting mainly  relies  on  charge  based  interactions  and  hydrogen  bonding  of  the  nanocarrier with the biofilm.
  • While biofilm targeting strategies have extensively been  developed  for  liposomal  drug  delivery  systems,  to  the  best  of  our  knowledge  no  studies  regarding  the  specific  targeting  of  polymer  or  lipid‐polymer  hybrid  nanoparticles  have  been  published to date.

3.1. Non‐specific targeting

  • Jones  and  coworkers  established  that  phosphatidylinositol  (PI)  and  to  a  lesser  extent  DPPG  caused the adsorption of liposomes to biofilms formed by bacteria recovered from the skin and  the oral cavity. [75].
  • All  the  liposomes  tested showed a certain degree of  inhibition of the bacterial growth, but only  for  low drug to  PLGA  PCL  Ciprofloxacin   Levofloxacin  0.17‐0.24  ND.
  • ND ND Stearylamine (SA) is another compound that can be used for the targeting of biofilm bacteria.
  • More  liposomes  are adsorbed  at  lower  ionic  strength, at higher  temperatures  and when  the  bacteria are more hydrophobic.
  • Over  time, more  and more  liposomes  adsorb  onto  the  biofilm,  increasing  the  penicillin G  concentration  in  the  biofilm  and  slowing  penicillin G release from the liposomes. [73].

3.2 Specific targeting

  • Another  targeting  possibility  is  the  use  of  immunoliposomes  which  carry  covalently  bound  antibodies on the outer surface.
  • The  immunoliposomes  strongly adsorbed to S. oralis biofilms and showed decreased affinity to other oral commensal  bacteria  tested  (S. gordonii,  S.  sanguis C104  and  S.  salivarius DBD  and 8618),  indicating  that  targeting of an antimicrobial agent  to a specific organism can be achieved.
  • Furthermore, the affinity of the DPPC:PI:DPPE‐ anti S. oralis  immunoliposomes was compared to that of DPPC:Chol:SA cationic  liposomes and  DPPC:PI anionic liposomes.
  • One example  is concanavalin A  (Con‐A), which  selectively binds  to  α‐mannopyranosyl and  α‐glucopyranosyl  residues  that  can be  found  in  the extracellular polysaccharide matrix of many biofilms.
  • The  latter  involves  the use of  a  photosensitizer  that produces  reactive oxygen  species  (ROS) upon exposure  to  light.

4 Triggered release inside biofilms

  • Triggered  release  of  the  antibiotic  from  nanoformulations  in  close  proximity  to  the  biofilm  bacteria  is another approach  to  increase  the  local  concentration of antibiotics  in  the biofilm.
  • The  ability  of  nanoparticles  to  penetrate  into  the  biofilm  is  a  first  aspect  that  needs  to  be  investigated.
  • The interaction of phospholipid liposomes  with mixed bacterial biofilms and their use in the delivery of bactericide, Colloids and Surfaces a‐ Physicochemical and Engineering Aspects, 186 (2001) 43‐53.  [81].

Did you find this useful? Give us your feedback

Citations
More filters
Journal ArticleDOI
TL;DR: This Review focuses on current therapeutic strategies and those under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells.
Abstract: Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections. The multifactorial nature of biofilm development and drug tolerance imposes great challenges for the use of conventional antimicrobials and indicates the need for multi-targeted or combinatorial therapies. In this Review, we focus on current therapeutic strategies and those under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells. We emphasize strategies that are supported by in vivo or ex vivo studies, highlight emerging biofilm-targeting technologies and provide a rationale for multi-targeted therapies aimed at disrupting the complex biofilm microenvironment.

1,039 citations

Journal ArticleDOI
TL;DR: The mechanisms by which nanomaterials can be used to target antibiotic-resistant bacterial infections are discussed, design elements and properties of nanomMaterials that can be engineered to enhance potency are highlighted, and recent progress and remaining challenges for clinical implementation are explored.
Abstract: Antibiotic-resistant bacterial infections arising from acquired resistance and/or through biofilm formation necessitate the development of innovative 'outside of the box' therapeutics Nanomaterial-based therapies are promising tools to combat bacterial infections that are difficult to treat, featuring the capacity to evade existing mechanisms associated with acquired drug resistance In addition, the unique size and physical properties of nanomaterials give them the capability to target biofilms, overcoming recalcitrant infections In this Review, we highlight the general mechanisms by which nanomaterials can be used to target bacterial infections associated with acquired antibiotic resistance and biofilms We emphasize design elements and properties of nanomaterials that can be engineered to enhance potency Lastly, we present recent progress and remaining challenges for widespread clinical implementation of nanomaterials as antimicrobial therapeutics

418 citations

Journal ArticleDOI
TL;DR: The requirements and merits of nanotechnology-based antimicrobials for the control of biofilm-infection form the focus of this Tutorial Review.
Abstract: Bacterial-infections are mostly due to bacteria in an adhering, biofilm-mode of growth and not due to planktonically growing, suspended-bacteria. Biofilm-bacteria are much more recalcitrant to conventional antimicrobials than planktonic-bacteria due to (1) emergence of new properties of biofilm-bacteria that cannot be predicted on the basis of planktonic properties, (2) low penetration and accumulation of antimicrobials in a biofilm, (3) disabling of antimicrobials due to acidic and anaerobic conditions prevailing in a biofilm, and (4) enzymatic modification or inactivation of antimicrobials by biofilm inhabitants. In recent years, new nanotechnology-based antimicrobials have been designed to kill planktonic, antibiotic-resistant bacteria, but additional requirements rather than the mere killing of suspended bacteria must be met to combat biofilm-infections. The requirements and merits of nanotechnology-based antimicrobials for the control of biofilm-infection form the focus of this Tutorial Review.

385 citations

Journal ArticleDOI
TL;DR: An overview of the different types and characteristics of nanoparticles used to deliver drugs to the target, followed by a review of current research and clinical trials addressing the use of nanoparticle systems within the field of infectious diseases.

292 citations

Journal ArticleDOI
24 Mar 2016-ACS Nano
TL;DR: The preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing enhanced biofilm penetration and accumulation, electrostatic targeting at acidic pH toward negatively charged bacterial cell surfaces in a biofilm, and antimicrobial release due to degradation of the micelle core by bacterial lipases constitutes a highly effective pathway to control blood-accessible staphylococcal biofilms using antimicrobials, bypassing biofilm recalcitrance to antimicrobial penetration.
Abstract: Biofilms cause persistent bacterial infections and are extremely recalcitrant to antimicrobials, due in part to reduced penetration of antimicrobials into biofilms that allows bacteria residing in the depth of a biofilm to survive antimicrobial treatment. Here, we describe the preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing (1) enhanced biofilm penetration and accumulation, (2) electrostatic targeting at acidic pH toward negatively charged bacterial cell surfaces in a biofilm, and (3) antimicrobial release due to degradation of the micelle core by bacterial lipases. First, it was established that mixed-shell-polymeric-micelles (MSPM) consisting of a hydrophilic poly(ethylene glycol) (PEG)-shell and pH-responsive poly(β-amino ester) become positively charged at pH 5.0, while being negatively charged at physiological pH. This is opposite to single-shell-polymeric-micelles (SSPM) possessing only a PEG-shell and remaining negatively charged at pH 5.0. The stealth properties of ...

276 citations

References
More filters
Journal ArticleDOI
21 May 1999-Science
TL;DR: Improvements in understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.
Abstract: Bacteria that attach to surfaces aggregate in a hydrated polymeric matrix of their own synthesis to form biofilms. Formation of these sessile communities and their inherent resistance to antimicrobial agents are at the root of many persistent and chronic bacterial infections. Studies of biofilms have revealed differentiated, structured groups of cells with community properties. Recent advances in our understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.

11,162 citations


"Lipid and polymer nanoparticles for..." refers background in this paper

  • ...[17] As a consequence, the economic burden due to biofilm infections is substantial....

    [...]

  • ...[16, 17] As a consequence, biofilms can cause devastating chronic infections and are associated with an increased morbidity and mortality....

    [...]

Journal ArticleDOI
TL;DR: It is submitted that complex cell-cell interactions within prokaryotic communities are an ancient characteristic, the development of which was facilitated by the localization of cells at surfaces, which may have provided the protective niche in which attached cells could create a localized homeostatic environment.
Abstract: Prokaryotic biofilms that predominate in a diverse range of ecosystems are often composed of highly structured multispecies communities. Within these communities metabolic activities are integrated, and developmental sequences, not unlike those of multicellular organisms, can be detected. These structural adaptations and interrelationships are made possible by the expression of sets of genes that result in phenotypes that differ profoundly from those of planktonically grown cells of the same species. Molecular and microscopic evidence suggest the existence of a succession of de facto biofilm phenotypes. We submit that complex cell-cell interactions within prokaryotic communities are an ancient characteristic, the development of which was facilitated by the localization of cells at surfaces. In addition to spatial localization, surfaces may have provided the protective niche in which attached cells could create a localized homeostatic environment. In a holistic sense both biofilm and planktonic phenotypes may be viewed as integrated components of prokaryote life.

2,862 citations


"Lipid and polymer nanoparticles for..." refers background in this paper

  • ...[7] It was observed that biofilm associated bacteria, termed sessile cells, display a profoundly different phenotype compared to their free swimming, planktonic counterparts....

    [...]

  • ...[7] The biofilm bacteria are able to communicate and alter each other’s phenotype by a process called quorum sensing....

    [...]

Journal ArticleDOI
TL;DR: This review presents why PLGA has been chosen to design nanoparticles as drug delivery systems in various biomedical applications such as vaccination, cancer, inflammation and other diseases.

2,753 citations


"Lipid and polymer nanoparticles for..." refers background in this paper

  • ...[91] Chitosan is a cationic, non‐toxic, linear polysaccharide biopolymer and is obtained via deacetylation of chitin, the structural component of the exoskeleton of crustaceans....

    [...]

Journal ArticleDOI
TL;DR: Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy and they can be treated by chronic suppressive therapy and a promising strategy may be the use of enzymes that can dissolve the biofilm matrix as well as quorum-sensing inhibitors that increase biofilm susceptibility to antibiotics.

2,637 citations


"Lipid and polymer nanoparticles for..." refers background in this paper

  • ...[20, 120] A classic way to determine the amount of liposomes adsorbed to the biofilm is to calculate the percentage apparent monolayer coverage (%amc)....

    [...]

Journal ArticleDOI
TL;DR: The current review of 129 references describes the biological activity of several chitosan derivatives and the modes of action that have been postulated in the literature.

2,615 citations


"Lipid and polymer nanoparticles for..." refers background in this paper

  • ...[97] The antimicrobial activity of chitosan was demonstrated against clinical isolates of B....

    [...]