scispace - formally typeset
Search or ask a question
Posted ContentDOI

Lipid storm within the lungs of severe COVID-19 patients: Extensive levels of cyclooxygenase and lipoxygenase-derived inflammatory metabolites.

TL;DR: The data unmask the important lipid storm occurring in the lungs of patients afflicted with severe COVID-19 and discuss which clinically available drugs could be helpful at modulating the lipidome in the hope of minimizing the deleterious effects of pro-inflammatory lipids and enhancing the effects of anti-inflammatory and/or pro-resolving lipids.
Abstract: BACKGROUND Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent responsible for Coronavirus disease 2019 (COVID-19). While SARS-CoV-2 infections are often benign, there are also severe COVID-19 cases, characterized by severe bilobar pneumonia that can decompensate to an acute respiratory distress syndrome, notably characterized by increased inflammation and a cytokine storm. While there is no cure against severe COVID-19 cases, some treatments significantly decrease the severity of the disease, notably aspirin and dexamethasone, which both directly or indirectly target the biosynthesis (and effects) of numerous bioactive lipids. OBJECTIVE Our working hypothesis was that severe COVID-19 cases necessitating mechanical ventilation were characterized by increased bioactive lipid levels modulating lung inflammation. We thus quantitated several lung bioactive lipids using liquid chromatography combined to tandem mass spectrometry. RESULTS We performed an exhaustive assessment of the lipid content of bronchoalveolar lavages from 25 healthy controls and 33 COVID-19 patients necessitating mechanical ventilation. Severe COVID-19 patients were characterized by increased fatty acid levels as well as an accompanying inflammatory lipid storm. As such, most quantified bioactive lipids were heavily increased. There was a predominance of cyclooxygenase metabolites, notably TXB2 >> PGE2 ∼ 12-HHTrE > PGD2. Leukotrienes were also increased, notably LTB4, 20-COOH-LTB4, LTE4, and eoxin E4. 15-lipoxygenase metabolites derived from linoleic, arachidonic, eicosapentaenoic and docosahexaenoic acids were also increased. Finally, yet importantly, specialized pro-resolving mediators, notably lipoxin A4 and the D-series resolvins, were also found at important levels, underscoring that the lipid storm occurring in severe SARS-CoV-2 infections involves pro- and anti-inflammatory lipids. CONCLUSIONS Our data unmask the important lipid storm occurring in the lungs of patients afflicted with severe COVID-19. We discuss which clinically available drugs could be helpful at modulating the lipidome we observed in the hope of minimizing the deleterious effects of pro-inflammatory lipids and enhancing the effects of anti-inflammatory and/or pro-resolving lipids.
Citations
More filters
Journal ArticleDOI
11 May 2021
TL;DR: The role of 12-LOXs in the pathogenesis of several diseases in which chronic inflammation plays an underlying role is reviewed, suggesting a translational potential of targeting the enzyme for the treatment of several disorders.
Abstract: Lipoxygenases (LOXs) are lipid metabolizing enzymes that catalyze the di-oxygenation of polyunsaturated fatty acids to generate active eicosanoid products. 12-lipoxygenases (12-LOXs) primarily oxygenate the 12th carbon of its substrates. Many studies have demonstrated that 12-LOXs and their eicosanoid metabolite 12-hydroxyeicosatetraenoate (12-HETE), have significant pathological implications in inflammatory diseases. Increased level of 12-LOX activity promotes stress (both oxidative and endoplasmic reticulum)-mediated inflammation, leading to damage in these tissues. 12-LOXs are also associated with enhanced cellular migration of immune cells-a characteristic of several metabolic and autoimmune disorders. Genetic depletion or pharmacological inhibition of the enzyme in animal models of various diseases has shown to be protective against disease development and/or progression in animal models in the setting of diabetes, pulmonary, cardiovascular, and metabolic disease, suggesting a translational potential of targeting the enzyme for the treatment of several disorders. In this article, we review the role of 12-LOXs in the pathogenesis of several diseases in which chronic inflammation plays an underlying role.

33 citations

Journal ArticleDOI
TL;DR: Based on correlations between the coronavirus-induced modifications of lipid metabolism in host cells, plasmalogen deficiency in the lung surfactant of COVID-19 patients, and the alterations of lipid membrane structural organization and composition including the induction of cubic membranes (CM) as discussed by the authors, the authors emphasize the key role of plasmasmalogens in the coron avirus (SARS-CoV-2, SARS- CoV, or MERS-coV) entry and replication.
Abstract: Coronaviruses have lipid envelopes required for their activity. The fact that coronavirus infection provokes the formation of cubic membranes (CM) (denoted also as convoluted membranes) in host cells has not been rationalized in the development of antiviral therapies yet. In this context, the role of bioactive plasmalogens (vinyl ether glycerophospholipids) is not completely understood. These lipid species display a propensity for non-lamellar phase formation, facilitating membrane fusion, and modulate the activity of membrane-bound proteins such as enzymes and receptors. At the organism level, plasmalogen deficiency is associated with cardiometabolic disorders including obesity and type 2 diabetes in humans. A straight link is perceived with the susceptibility of such patients to SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) infection, the severity of illness, and the related difficulty in treatment. Based on correlations between the coronavirus-induced modifications of lipid metabolism in host cells, plasmalogen deficiency in the lung surfactant of COVID-19 patients, and the alterations of lipid membrane structural organization and composition including the induction of CM, we emphasize the key role of plasmalogens in the coronavirus (SARS-CoV-2, SARS-CoV, or MERS-CoV) entry and replication in host cells. Considering that plasmalogen-enriched lung surfactant formulations may improve the respiratory process in severe infected individuals, plasmalogens can be suggested as an anti-viral prophylactic, a lipid biomarker in SARS-CoV and SARS-CoV-2 infections, and a potential anti-viral therapeutic component of lung surfactant development for COVID-19 patients.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the association of high n-6 PUFA or low n-3 PUFA due to genetic variation and/or dietary intake, with changes in specialized pro-resolving mediators (SPMs), cytokine storm, inflammation-resolution and Covid-19.

19 citations

Journal ArticleDOI
TL;DR: In this article , the SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage.
Abstract: SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.

15 citations

Journal ArticleDOI
TL;DR: In this article , the SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage.
Abstract: SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.

15 citations

References
More filters
Journal ArticleDOI
TL;DR: The epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of patients with laboratory-confirmed 2019-nCoV infection in Wuhan, China, were reported.

36,578 citations

Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.
Abstract: Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1–3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans. Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.

9,231 citations

Journal ArticleDOI
TL;DR: In patients hospitalized with Covid-19, the use of dexamethasone resulted in lower 28-day mortality among those who were receiving either invasive mechanical ventilation or oxygen alone at randomization but not among those receiving no respiratory support.
Abstract: BackgroundCoronavirus disease 2019 (Covid-19) is associated with diffuse lung damage. Glucocorticoids may modulate inflammation-mediated lung injury and thereby reduce progression to respiratory failure and death.MethodsIn this controlled, open-label trial comparing a range of possible treatments in patients who were hospitalized with Covid-19, we randomly assigned patients to receive oral or intravenous dexamethasone (at a dose of 6 mg once daily) for up to 10 days or to receive usual care alone. The primary outcome was 28-day mortality. Here, we report the final results of this assessment.ResultsA total of 2104 patients were assigned to receive dexamethasone and 4321 to receive usual care. Overall, 482 patients (22.9%) in the dexamethasone group and 1110 patients (25.7%) in the usual care group died within 28 days after randomization (age-adjusted rate ratio, 0.83; 95% confidence interval [CI], 0.75 to 0.93; P<0.001). The proportional and absolute between-group differences in mortality varied considerably according to the level of respiratory support that the patients were receiving at the time of randomization. In the dexamethasone group, the incidence of death was lower than that in the usual care group among patients receiving invasive mechanical ventilation (29.3% vs. 41.4%; rate ratio, 0.64; 95% CI, 0.51 to 0.81) and among those receiving oxygen without invasive mechanical ventilation (23.3% vs. 26.2%; rate ratio, 0.82; 95% CI, 0.72 to 0.94) but not among those who were receiving no respiratory support at randomization (17.8% vs. 14.0%; rate ratio, 1.19; 95% CI, 0.92 to 1.55).ConclusionsIn patients hospitalized with Covid-19, the use of dexamethasone resulted in lower 28-day mortality among those who were receiving either invasive mechanical ventilation or oxygen alone at randomization but not among those receiving no respiratory support. (Funded by the Medical Research Council and National Institute for Health Research and others; RECOVERY ClinicalTrials.gov number, NCT04381936. opens in new tab; ISRCTN number, 50189673. opens in new tab.)

4,501 citations


"Lipid storm within the lungs of sev..." refers background in this paper

  • ...COVID-19 symptoms and diminishing mortality (32-34), limits COX-2 expression (35-37) and might 308 thus improve COVID-19 severity, at least in part, by diminishing the biosynthesis of prostaglandins and 309 possibly TXA2....

    [...]

Journal ArticleDOI
TL;DR: Single-cell transcriptome and T cell receptor analysis of bronchoalveolar lavage fluid suggests enrichment of proinflammatory macrophages in patients with severe COVID-19 and the presence of clonally expanded CD8 + T cells in Patients with moderate CO VID-19.
Abstract: Respiratory immune characteristics associated with Coronavirus Disease 2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid immune cells from patients with varying severity of COVID-19 and from healthy people by using single-cell RNA sequencing. Proinflammatory monocyte-derived macrophages were abundant in the bronchoalveolar lavage fluid from patients with severe COVID-9. Moderate cases were characterized by the presence of highly clonally expanded CD8+ T cells. This atlas of the bronchoalveolar immune microenvironment suggests potential mechanisms underlying pathogenesis and recovery in COVID-19.

1,918 citations


"Lipid storm within the lungs of sev..." refers background or result in this paper

  • ...Our 187 working hypothesis was that some COX metabolites would be increased, considering that IL-1β levels 188 are elevated in the BALs of some COVID-19 patients (16) and that IL-1β is a potent inducer of 189...

    [...]

  • ...of severe COVID-19 patients are comparable to those found in BAL fluids of ARDS patients (16)....

    [...]

  • ...well-defined (8, 12-14), a much more limited number of studies characterizing the cytokine storm in the 182 lungs of severe COVID-19 patients were available (13, 15, 16)....

    [...]

  • ...This was somewhat expected, notably because of the increased levels of IL-1β described before (16), 298 the latter being a good COX-2 inducer....

    [...]

Journal ArticleDOI
TL;DR: Children diagnosed after the SARS-CoV-2 epidemic began showed evidence of immune response to the virus, were older, had a higher rate of cardiac involvement, and features of MAS, and a similar outbreak of Kawasaki-like disease is expected in countries involved in the SEMS epidemic.

1,851 citations


"Lipid storm within the lungs of sev..." refers background in this paper

  • ...The clinical manifestations of the disease are often mild 82 but severe cases can lead to bilobar pneumonia with hyperactivation of the inflammatory cascade and 83 progression to acute respiratory distress syndrome (ARDS), necessitating mechanical ventilation (2, 3)....

    [...]

Trending Questions (1)
How to make your lungs stop hurting from Covid?

Our data unmask the important lipid storm occurring in the lungs of patients afflicted with severe COVID-19.