scispace - formally typeset
Open accessJournal ArticleDOI: 10.1080/15548627.2020.1728097

Lipophagy-derived fatty acids undergo extracellular efflux via lysosomal exocytosis

04 Mar 2021-Autophagy (Autophagy)-Vol. 17, Iss: 3, pp 690-705
Abstract: The autophagic degradation of lipid droplets (LDs), termed lipophagy, is a major mechanism that contributes to lipid turnover in numerous cell types. While numerous factors, including nutrient depr...

... read more

Topics: Lipid droplet (59%), Lipid metabolism (52%)

15 results found

Open accessJournal ArticleDOI: 10.1016/J.MOLCEL.2020.05.007
Anyuan He1, Xiaowen Chen1, Min Tan1, Yali Chen1  +5 moreInstitutions (1)
02 Jul 2020-Molecular Cell
Abstract: Autophagy is activated by prolonged fasting but cannot overcome the ensuing hepatic lipid overload, resulting in fatty liver. Here, we describe a peroxisome-lysosome metabolic link that restricts autophagic degradation of lipids. Acyl-CoA oxidase 1 (Acox1), the enzyme that catalyzes the first step in peroxisomal β-oxidation, is enriched in liver and further increases with fasting or high-fat diet (HFD). Liver-specific Acox1 knockout (Acox1-LKO) protected mice against hepatic steatosis caused by starvation or HFD due to induction of autophagic degradation of lipid droplets. Hepatic Acox1 deficiency markedly lowered total cytosolic acetyl-CoA levels, which led to decreased Raptor acetylation and reduced lysosomal localization of mTOR, resulting in impaired activation of mTORC1, a central regulator of autophagy. Dichloroacetic acid treatment elevated acetyl-CoA levels, restored mTORC1 activation, inhibited autophagy, and increased hepatic triglycerides in Acox1-LKO mice. These results identify peroxisome-derived acetyl-CoA as a key metabolic regulator of autophagy that controls hepatic lipid homeostasis.

... read more

Topics: Lipid droplet (56%), Autophagy (56%), Lipid metabolism (55%) ... read more

18 Citations

Open accessJournal ArticleDOI: 10.1016/J.MOLMET.2020.101115
Douglas G. Mashek1Institutions (1)
Abstract: Background Non-alcoholic fatty liver disease (NAFLD) is defined by the abundance of lipid droplets (LDs) in hepatocytes. While historically considered simply depots for energy storage, LDs are increasingly recognized to impact a wide range of biological processes that influence cellular metabolism, signaling, and function. While progress has been made toward understanding the factors leading to LD accumulation (i.e. steatosis) and its progression to advanced stages of NAFLD and/or systemic metabolic dysfunction, much remains to be resolved. Scope of review This review covers many facets of LD biology. We provide a brief overview of the major pathways of lipid accretion and degradation that contribute to steatosis and how they are altered in NAFLD. The major focus is on the relationship between LDs and cell function and the detailed mechanisms that couple or uncouple steatosis from the severity and progression of NAFLD and systemic comorbidities. The importance of specific lipids and proteins within or on LDs as key components that determine whether LD accumulation is linked to cellular and metabolic dysfunction is presented. We discuss emerging areas of LD biology and future research directions that are needed to advance our understanding of the role of LDs in NAFLD etiology. Major conclusions Impairments in LD breakdown appear to contribute to disease progression, but inefficient incorporation of fatty acids (FAs) into LD-containing triacylglycerol (TAG) and the consequential changes in FA partitioning also affect NAFLD etiology. Increased LD abundance in hepatocytes does not necessarily equate to cellular dysfunction. While LD accumulation is the prerequisite step for most NAFLD cases, the protein and lipid composition of LDs are critical factors in determining the progression from simple steatosis. Further defining the detailed molecular mechanisms linking LDs to metabolic dysfunction is important for designing effective therapeutic approaches targeting NAFLD and its comorbidities.

... read more

Topics: Steatosis (51%), Lipid droplet (50%), Lipotoxicity (50%)

16 Citations

Open accessJournal ArticleDOI: 10.3389/FCELL.2020.602574
Yunyun Fang1, Linlin Ji1, Chaoyu Zhu1, Yuanyuan Xiao1  +4 moreInstitutions (2)
Abstract: Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has been demonstrated to alleviate non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism has not been fully elucidated. Increasing evidence suggests that autophagy is involved in the pathogenesis of hepatic steatosis. In this study, we examined whether liraglutide could alleviate hepatic steatosis through autophagy-dependent lipid degradation and investigated the underlying mechanisms. Herein, the effects of liraglutide on NAFLD were evaluated in a high-fat diet (HFD)-induced mouse model of NAFLD as well as in mouse primary and HepG2 hepatocytes exposed to palmitic acid (PA). The expression of the GLP-1 receptor (GLP-1R) was measured in vivo and in vitro. Oil red O staining was performed to detect lipid accumulation in hepatocytes. Electron microscopy was used to observe the morphology of autophagic vesicles and autolysosomes. Autophagic flux activity was measured by infecting HepG2 cells with mRFP-GFP-LC3 adenovirus. The roles of GLP-1R and transcription factor EB (TFEB) in autophagy-lysosomal activation were explored using small interfering RNA. Liraglutide treatment alleviated hepatic steatosis in vivo and in vitro. In models of hepatic steatosis, microtubule-associated protein 1B light chain-3-II (LC3-II) and SQSTM1/P62 levels were elevated in parallel to blockade of autophagic flux. Liraglutide treatment restored autophagic activity by improving lysosomal function. Furthermore, treatment with autophagy inhibitor chloroquine weakened liraglutide-induced autophagy activation and lipid degradation. TFEB has been identified as a key regulator of lysosome biogenesis and autophagy. The protein levels of nuclear TFEB and its downstream targets CTSB and LAMP1 were decreased in hepatocytes treated with PA, and these decreases were reversed by liraglutide treatment. Knockdown of TFEB expression compromised the effects of liraglutide on lysosome biogenesis and hepatic lipid accumulation. Mechanistically, GLP-1R expression was decreased in HFD mouse livers as well as PA-stimulated hepatocytes, and liraglutide treatment reversed the downregulation of GLP-1R expression in vivo and in vitro. Moreover, GLP-1R inhibition could mimic the effect of the TFEB downregulation-mediated decrease in lysosome biogenesis. Thus, our findings suggest that liraglutide attenuated hepatic steatosis via restoring autophagic flux, specifically the GLP-1R-TFEB-mediated autophagy-lysosomal pathway.

... read more

Topics: TFEB (67%), Steatosis (54%), Autophagy (53%) ... read more

12 Citations

Open accessJournal ArticleDOI: 10.3390/MEMBRANES10120406
Brunella Tancini1, Sandra Buratta1, Federica Delo1, Krizia Sagini1  +4 moreInstitutions (1)
09 Dec 2020-
Abstract: Lysosomes are acidic cell compartments containing a large set of hydrolytic enzymes. These lysosomal hydrolases degrade proteins, lipids, polysaccharides, and nucleic acids into their constituents. Materials to be degraded can reach lysosomes either from inside the cell, by autophagy, or from outside the cell, by different forms of endocytosis. In addition to their degradative functions, lysosomes are also able to extracellularly release their contents by lysosomal exocytosis. These organelles move from the perinuclear region along microtubules towards the proximity of the plasma membrane, then the lysosomal and plasma membrane fuse together via a Ca2+-dependent process. The fusion of the lysosomal membrane with plasma membrane plays an important role in plasma membrane repair, while the secretion of lysosomal content is relevant for the remodelling of extracellular matrix and release of functional substrates. Lysosomal storage disorders (LSDs) and age-related neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, share as a pathological feature the accumulation of undigested material within organelles of the endolysosomal system. Recent studies suggest that lysosomal exocytosis stimulation may have beneficial effects on the accumulation of these unprocessed aggregates, leading to their extracellular elimination. However, many details of the molecular machinery required for lysosomal exocytosis are only beginning to be unravelled. Here, we are going to review the current literature on molecular mechanisms and biological functions underlying lysosomal exocytosis, to shed light on the potential of lysosomal exocytosis stimulation as a therapeutic approach.

... read more

Topics: Plasma membrane repair (58%), Endocytosis (56%), TFEB (56%) ... read more

12 Citations

Open accessJournal ArticleDOI: 10.3389/FENDO.2020.601627
Abstract: Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction) associated liver disease (MAFLD), is, with a global prevalence of 25%, the most common liver disorder worldwide. NAFLD comprises a spectrum of liver disorders ranging from simple steatosis to steatohepatitis, fibrosis, cirrhosis and eventually end-stage liver disease. The cause of NAFLD is multifactorial with genetic susceptibility and an unhealthy lifestyle playing a crucial role in its development. Disrupted hepatic lipid homeostasis resulting in hepatic triglyceride accumulation is an hallmark of NAFLD. This disruption is commonly described based on four pathways concerning 1) increased fatty acid influx, 2) increased de novo lipogenesis, 3) reduced triglyceride secretion, and 4) reduced fatty acid oxidation. More recently, lipophagy has also emerged as pathway affecting NAFLD development and progression. Lipophagy is a form of autophagy (i.e. controlled autolysosomal degradation and recycling of cellular components), that controls the breakdown of lipid droplets in the liver. Here we address the role of hepatic lipid homeostasis in NAFLD and specifically review the current literature on lipophagy, describing its underlying mechanism, its role in pathophysiology and its potential as a therapeutic target.

... read more

Topics: Steatohepatitis (64%), Fatty liver (63%), Liver disorder (61%) ... read more

7 Citations


69 results found

Open accessJournal ArticleDOI: 10.1186/GB-2006-7-10-R100
31 Oct 2006-Genome Biology
Abstract: Biologists can now prepare and image thousands of samples per day using automation, enabling chemical screens and functional genomics (for example, using RNA interference). Here we describe the first free, open-source system designed for flexible, high-throughput cell image analysis, CellProfiler. CellProfiler can address a variety of biological questions quantitatively, including standard assays (for example, cell count, size, per-cell protein levels) and complex morphological assays (for example, cell/organelle shape or subcellular patterns of DNA or protein staining).

... read more

Topics: Bioimage informatics (52%)

3,916 Citations

Open accessJournal ArticleDOI: 10.1146/ANNUREV-GENET-102808-114910
Congcong He1, Daniel J. Klionsky1Institutions (1)
Abstract: Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.

... read more

Topics: BAG3 (67%), Autophagy (61%), Programmed cell death (61%) ... read more

2,934 Citations

Open accessJournal ArticleDOI: 10.1038/NATURE07976
Rajat Singh1, Susmita Kaushik, Yongjun Wang, Youqing Xiang  +5 moreInstitutions (2)
30 Apr 2009-Nature
Abstract: The intracellular storage and utilization of lipids are critical to maintain cellular energy homeostasis. During nutrient deprivation, cellular lipids stored as triglycerides in lipid droplets are hydrolysed into fatty acids for energy. A second cellular response to starvation is the induction of autophagy, which delivers intracellular proteins and organelles sequestered in double-membrane vesicles (autophagosomes) to lysosomes for degradation and use as an energy source. Lipolysis and autophagy share similarities in regulation and function but are not known to be interrelated. Here we show a previously unknown function for autophagy in regulating intracellular lipid stores (macrolipophagy). Lipid droplets and autophagic components associated during nutrient deprivation, and inhibition of autophagy in cultured hepatocytes and mouse liver increased triglyceride storage in lipid droplets. This study identifies a critical function for autophagy in lipid metabolism that could have important implications for human diseases with lipid over-accumulation such as those that comprise the metabolic syndrome.

... read more

Topics: Lipid droplet (71%), Lipid metabolism (66%), Autophagy (58%) ... read more

2,610 Citations

Journal ArticleDOI: 10.1126/SCIENCE.1100747
19 Nov 2004-Science
Abstract: Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue. Here, we report that a second enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in triglyceride hydrolysis. It is interesting that ATGL contains a "patatin domain" common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of mice and humans. It exhibits high substrate specificity for triacylglycerol and is associated with lipid droplets. Inhibition of ATGL markedly decreases total adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize stored triglycerides in adipose tissue of mammals.

... read more

Topics: Adipose triglyceride lipase (75%), White adipose tissue (70%), Adipose tissue (67%) ... read more

1,704 Citations

No. of citations received by the Paper in previous years