scispace - formally typeset
Open AccessPosted Content

Listening to the BOSS: the galaxy power spectrum take on spatial curvature and cosmic concordance

Reads0
Chats0
TLDR
In this article, the authors used the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample to study the concordance of the LAMCDM cosmological model in light of current observations.
Abstract
The concordance of the $\Lambda$CDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter $\Omega_K<0$. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, $P(k)$, from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find $\Omega_K=0.0023 \pm 0.0028$. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit $\chi^2$ suggests a similar level of tension between Planck and $P(k)$ under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.

read more

Citations
More filters
Journal ArticleDOI

Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies

Elcio Abdalla, +202 more
TL;DR: In this paper , the authors focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements and discuss the importance of trying to fit a full array of data with a single model.

Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking

TL;DR: In this article, the treatment of first-order phase transitions for standard grand unified theories is shown to break down for models with radiatively induced spontaneous symmetry breaking, leading to an explanation of the cosmological homogeneity, flatness, and monopole puzzles.
Journal ArticleDOI

Planck evidence for a closed Universe and a possible crisis for cosmology

TL;DR: In this paper, the authors further investigate the evidence for a closed universe from Planck, showing that positive curvature naturally explains the anomalous lensing amplitude and removing a well-known tension within the Planck data set concerning the values of cosmological parameters derived at different angular scales.
Journal ArticleDOI

Eppur \`e piatto? The cosmic chronometer take on spatial curvature and cosmic concordance

TL;DR: In this article, the authors show that the universe is spatially flat to the 10 − 2 -2 -approximation of the cosmological curvature parameter of the Planck temperature and polarization data.
References
More filters
Journal ArticleDOI

Inference from Iterative Simulation Using Multiple Sequences

TL;DR: The focus is on applied inference for Bayesian posterior distributions in real problems, which often tend toward normal- ity after transformations and marginalization, and the results are derived as normal-theory approximations to exact Bayesian inference, conditional on the observed simulations.
Journal ArticleDOI

Bayesian measures of model complexity and fit

TL;DR: In this paper, the authors consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined and derive a measure pD for the effective number in a model as the difference between the posterior mean of the deviances and the deviance at the posterior means of the parameters of interest, which is related to other information criteria and has an approximate decision theoretic justification.
Journal ArticleDOI

Inflationary universe: A possible solution to the horizon and flatness problems

TL;DR: In this paper, the authors proposed a model of hot big-bang cosmology where the early universe is assumed to be highly homogeneous, in spite of the fact that separated regions were causally disconnected (horizon problem).
Related Papers (5)

The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample

Shadab Alam, +90 more

Planck 2018 results. VI. Cosmological parameters

Nabila Aghanim, +232 more