scispace - formally typeset
Journal ArticleDOI

Lithium sulfur batteries, a mechanistic review

Reads0
Chats0
TLDR
In this paper, a review of a range of analytical studies and physical models for Li-S batteries is presented, showing that experimental understanding is well ahead of state-of-the-art models.
Abstract
Lithium sulfur (Li–S) batteries are one of the most promising next generation battery chemistries with potential to achieve 500–600 W h kg−1 in the next few years. Yet understanding the underlying mechanisms of operation remains a major obstacle to their continued improvement. From a review of a range of analytical studies and physical models, it is clear that experimental understanding is well ahead of state-of-the-art models. Yet this understanding is still hindered by the limitations of available techniques and the implications of experiment and cell design on the mechanism. The mechanisms at the core of physical models for Li–S cells are overly simplistic compared to the latest thinking based upon experimental results, but creating more complicated models will be difficult, due to the lack of and inability to easily measure the necessary parameters. Despite this, there are significant opportunities to improve models with the latest experimentally derived mechanisms. Such models can inform materials research and lead to improved high fidelity models for controls and application engineers.

read more

Citations
More filters
Journal ArticleDOI

Review on High-Loading and High-Energy Lithium–Sulfur Batteries

TL;DR: In this paper, the authors highlight the recent progress in high-sulfur-loading Li-S batteries enabled by hierarchical design principles at multiscale, particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator.
Journal ArticleDOI

Energy and fuels from electrochemical interfaces

TL;DR: Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems.
Journal ArticleDOI

Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries

TL;DR: The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here and the relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li -S batteries are discussed.
Journal ArticleDOI

Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices

TL;DR: Various application of ILs are reviewed by focusing on their use as electrolyte materials for Li/Na ion batteries, Li-sulfur batteries,Li-oxygen batteries, and nonhumidifiedfuel cells and as carbon precursors for electrode catalysts of fuel cells and electrode materials for batteries and supercapacitors.
Journal ArticleDOI

Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries

TL;DR: In this article, the catalytic role of reduced graphene oxide (MoS2−x/reduced graphene oxide) was investigated for catalyzing polysulfide reactions to improve the battery performance.
References
More filters
Journal ArticleDOI

Lithium metal anodes for rechargeable batteries

TL;DR: In this article, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed, and the results obtained by modelling of Li dendrite growth have also been reviewed.
Journal ArticleDOI

Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects

TL;DR: Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li-S batteries serves as a prospective strategy for the industry in the future.
Journal ArticleDOI

Polysulfide Shuttle Study in the Li/S Battery System

TL;DR: In this paper, the authors report a quantitative analysis of the shuttle phenomenon in Li/S rechargeable batteries and present experimental evidence that selfdischarge, charge-discharge efficiency, charge profile, and overcharge protection are all facets of the same phenomenon.
Journal ArticleDOI

Erratum: Corrigendum: The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody

TL;DR: In the Methods section of this Article, the species of the tissue plasminogen activator secretory signal used in adenovirus vector construction was stated incorrectly and should have been given as human.
Related Papers (5)
Trending Questions (1)
Could i get lithium sulfur battery review paper?

Title: Lithium sulfur batteries, a mechanistic review. The paper provides a comprehensive review of lithium sulfur batteries, focusing on experimental understanding, limitations, and opportunities for improvement in models.