scispace - formally typeset
Journal ArticleDOI

Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries.

Zhan Lin, +3 more
- 01 Mar 2013 - 
- Vol. 7, Iss: 3, pp 2829-2833
Reads0
Chats0
TLDR
This work presents a facile synthesis approach for core-shell structuredLi2S nanoparticles with Li2S as the core and Li3PS4 as the shell, which promises safe cycling of high-energy batteries with metallic lithium anodes.
Abstract
This work presents a facile synthesis approach for core–shell structured Li2S nanoparticles with Li2S as the core and Li3PS4 as the shell. This material functions as lithium superionic sulfide (LSS) cathode for long-lasting, energy-efficient lithium–sulfur (Li–S) batteries. The LSS has an ionic conductivity of 10–7 S cm–1 at 25 °C, which is 6 orders of magnitude higher than that of bulk Li2S (∼10–13 S cm–1). The high lithium-ion conductivity of LSS imparts an excellent cycling performance to all-solid Li–S batteries, which also promises safe cycling of high-energy batteries with metallic lithium anodes.

read more

Citations
More filters
Journal ArticleDOI

Li-ion battery materials: present and future

TL;DR: In this article, a review of the key technological developments and scientific challenges for a broad range of Li-ion battery electrodes is presented, and the potential/capacity plots are used to compare many families of suitable materials.
Journal ArticleDOI

Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects

TL;DR: Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li-S batteries serves as a prospective strategy for the industry in the future.
Journal ArticleDOI

Designing high-energy lithium–sulfur batteries

TL;DR: This review aims to summarize major developments in the field of lithium-sulfur batteries, starting from an overview of their electrochemistry, technical challenges and potential solutions, along with some theoretical calculation results to advance the understanding of the material interactions involved.
Journal ArticleDOI

Review on High-Loading and High-Energy Lithium–Sulfur Batteries

TL;DR: In this paper, the authors highlight the recent progress in high-sulfur-loading Li-S batteries enabled by hierarchical design principles at multiscale, particularly, basic insights into the interfacial reactions, strategies for mesoscale assembly, unique architectures, and configurational innovation in the cathode, anode, and separator.
Journal ArticleDOI

More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects.

TL;DR: The Li-S battery is a complex device and its useful energy density is determined by a number of design parameters, most of which are often ignored, leading to the failure to meet commercial requirements, so how to pave the way for reliableLi-S batteries is discussed.
References
More filters
Journal ArticleDOI

Issues and challenges facing rechargeable lithium batteries

TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Journal ArticleDOI

Building better batteries

TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Journal ArticleDOI

Challenges for Rechargeable Li Batteries

TL;DR: In this paper, the authors reviewed the challenges for further development of Li rechargeable batteries for electric vehicles and proposed a nonflammable electrolyte with either a larger window between its lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) or a constituent that can develop rapidly a solid/ electrolyte-interface (SEI) layer to prevent plating of Li on a carbon anode during a fast charge of the battery.
Journal ArticleDOI

Li-O2 and Li-S batteries with high energy storage.

TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Journal ArticleDOI

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Related Papers (5)