scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Location Fingerprinting With Bluetooth Low Energy Beacons

06 May 2015-IEEE Journal on Selected Areas in Communications (IEEE)-Vol. 33, Iss: 11, pp 2418-2428
TL;DR: This work provides a detailed study of BLE fingerprinting using 19 beacons distributed around a ~600 m2 testbed to position a consumer device, and investigates the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency.
Abstract: The complexity of indoor radio propagation has resulted in location-awareness being derived from empirical fingerprinting techniques, where positioning is performed via a previously-constructed radio map, usually of WiFi signals. The recent introduction of the Bluetooth Low Energy (BLE) radio protocol provides new opportunities for indoor location. It supports portable battery-powered beacons that can be easily distributed at low cost, giving it distinct advantages over WiFi. However, its differing use of the radio band brings new challenges too. In this work, we provide a detailed study of BLE fingerprinting using 19 beacons distributed around a $\sim\! 600\ \mbox{m}^2$ testbed to position a consumer device. We demonstrate the high susceptibility of BLE to fast fading, show how to mitigate this, and quantify the true power cost of continuous BLE scanning. We further investigate the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency. We also provide quantitative comparison with WiFi fingerprinting. Our results show advantages to the use of BLE beacons for positioning. For one-shot (push-to-fix) positioning we achieve $30\ \mbox{m}^2$ ), compared to $100\ \mbox{m}^2$ ) and < 8.5 m for an established WiFi network in the same area.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors reviewed the most recent advances made in UWB positioning systems over the last five years, with a focus on high-ranking articles and highlighted the most promising findings of the recently implemented and foreseen UWB localization systems by providing a summary of each reviewed article.
Abstract: Logistics is an important driver for the competitiveness of industries and material supply. The development of smart logistics, powered by precise positioning and communication technologies can significantly improve the efficiency of logistics. The emerging technology of ultra-wideband (UWB) precision positioning has attracted significant attention throughout the previous decade owing to its promising capabilities over other radio frequency-based indoor localisation systems. In addition, UWB is characterised by large bandwidth and data rate, short message length, low transmission power and high penetration capability, which are all favourable for indoor positioning applications. However, UWB localisation technology faces several challenges that are somewhat similar to other technologies, such as mitigating errors that originate from non-line-of-sight (NLOS) situations and tackling signal interference in dense environments, and when required to operate in extreme conditions. This paper reviews the most recent advances made in UWB positioning systems over the last five years, with a focus on high-ranking articles. In addition to going through more conventional solutions to UWB challenges, modern solutions, which involve the use of machine learning and sensor data fusion, are discussed. We highlight the most promising findings of the recently implemented and foreseen UWB positioning systems by providing a summary of each reviewed article. Additionally, we address a major challenge that faces the UWB positioning technology: NLOS situations, focusing on some proposed remedies such as multi-sensor fusion and machine learning. As an application, this study introduces how UWB technology promotes smart logistics by offering indoor positioning to improve efficiencies in the delivery of goods from the source to the customer. Furthermore, it demonstrates the benefits of UWB technology for accurate positioning and tracking of both stationary and moving items, and machinery in an indoor logistics environment.

21 citations

Journal ArticleDOI
TL;DR: In this article , the authors reviewed the most recent advances made in UWB positioning systems over the last five years, with a focus on high-ranking articles, and highlighted the most promising findings of the recently implemented and foreseen UWB localization systems by providing a summary of each reviewed article.
Abstract: Logistics is an important driver for the competitiveness of industries and material supply. The development of smart logistics, powered by precise positioning and communication technologies can significantly improve the efficiency of logistics. The emerging technology of ultra-wideband (UWB) precision positioning has attracted significant attention throughout the previous decade owing to its promising capabilities over other radio frequency-based indoor localisation systems. In addition, UWB is characterised by large bandwidth and data rate, short message length, low transmission power and high penetration capability, which are all favourable for indoor positioning applications. However, UWB localisation technology faces several challenges that are somewhat similar to other technologies, such as mitigating errors that originate from non-line-of-sight (NLOS) situations and tackling signal interference in dense environments, and when required to operate in extreme conditions. This paper reviews the most recent advances made in UWB positioning systems over the last five years, with a focus on high-ranking articles. In addition to going through more conventional solutions to UWB challenges, modern solutions, which involve the use of machine learning and sensor data fusion, are discussed. We highlight the most promising findings of the recently implemented and foreseen UWB positioning systems by providing a summary of each reviewed article. Additionally, we address a major challenge that faces the UWB positioning technology: NLOS situations, focusing on some proposed remedies such as multi-sensor fusion and machine learning. As an application, this study introduces how UWB technology promotes smart logistics by offering indoor positioning to improve efficiencies in the delivery of goods from the source to the customer. Furthermore, it demonstrates the benefits of UWB technology for accurate positioning and tracking of both stationary and moving items, and machinery in an indoor logistics environment.

21 citations

Journal ArticleDOI
TL;DR: A novel indoor positioning algorithm based on the received signal strength indication and pedestrian dead reckoning is proposed that has a higher accuracy and is less impacted by NLOS errors than other conventional methods in mixed LOS and NLOS indoor environments.
Abstract: In recent years, location-based services have been receiving increasing attention because of their great development prospects. Researchers from all over the world have proposed many solutions for indoor positioning over the past several years. However, owing to the dynamic and complex nature of indoor environments, accurately and efficiently localising targets in indoor environments remains a challenging problem. In this paper, we propose a novel indoor positioning algorithm based on the received signal strength indication and pedestrian dead reckoning. In order to enhance the accuracy and reliability of our proposed probabilistic position selection algorithm in mixed line-of-sight (LOS) and non-line-of-sight (NLOS) environments, a low-complexity identification approach is proposed to identify the change in the channel situation between NLOS and LOS. Numerical experiment results indicate that our proposed algorithm has a higher accuracy and is less impacted by NLOS errors than other conventional methods in mixed LOS and NLOS indoor environments.

20 citations

Journal ArticleDOI
TL;DR: In this article, a Particle Filter-based Indoor Positioning System (PFIPS) is proposed to localize and track a tag that broadcasts Bluetooth Low Energy (BLE) beacon messages to BLE receivers.
Abstract: Indoor positioning technology is one of the cornerstones for many services in Internet-of-Things (IoT) systems. However, the existing indoor positioning systems are still suffering from several issues, such as unstable positioning accuracy, a high system complexity, and a high deployment cost. To tackle these issues, this article presents a Particle Filter-based Indoor Positioning System (PFIPS) that can localize and track a tag that broadcasts Bluetooth Low Energy (BLE) beacon messages to BLE receivers. The proposed PFIPS uses a Kalman Filter to preprocess collected Received Signal Strength Indication (RSSI) information in order to smooth the fluctuated RSSI data. It also designs an effective Particle Filter (PF) to approximate the location of a tag, which gradually reduces the location uncertainties in a Gaussian belief space. To show the applicability of our PFIPS, we have developed PFIPS in a testbed based on commercial off-the-shelf (COTS) devices. Through intensive simulations and experiments, our experiment results show that our PFIPS outperforms the legacy indoor positioning systems in terms of location accuracy by 24.1% and achieves median accuracy of 1.16 m.

20 citations

Journal ArticleDOI
TL;DR: A visible light positioning (VLP)-assisted smartphone-based pedestrian dead reckoning (PDR) indoor positioning technology that combines the advantages of both PDR and VLP algorithms for indoor positioning.
Abstract: Aiming at the problem of heavy preparation work and high cost of indoor positioning technology, this paper proposes a visible light positioning (VLP)-assisted smartphone-based pedestrian dead reckoning (PDR) indoor positioning technology. This technology combines the advantages of both PDR and VLP algorithms for indoor positioning. During the pedestrian position calculation, the method of using the averaging of mode to process the heading angle data is creatively used, which improves the positioning accuracy and increases reliable operation time. At the same time, the two-level verification method consisting of cyclic redundancy check and range constraint is implemented for VLP, which uses a LED carrying a modulation code as a beacon for absolute position and the camera of smartphone to capture/decode the LED image to obtain the absolute position and periodically correct the position of the PDR positioning, thereby avoiding the accumulation of PDR positioning technology errors. The scope and reliability of PDR are demonstrated. The experiments show that this method is a kind of low cost, high robust, and high precision indoor positioning technology.

20 citations

References
More filters
Journal ArticleDOI
01 Nov 2007
TL;DR: Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.
Abstract: Wireless indoor positioning systems have become very popular in recent years. These systems have been successfully used in many applications such as asset tracking and inventory management. This paper provides an overview of the existing wireless indoor positioning solutions and attempts to classify different techniques and systems. Three typical location estimation schemes of triangulation, scene analysis, and proximity are analyzed. We also discuss location fingerprinting in detail since it is used in most current system or solutions. We then examine a set of properties by which location systems are evaluated, and apply this evaluation method to survey a number of existing systems. Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.

4,123 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...Indoor positioning is a mature research field, with many proposed technologies and techniques—comprehensive overviews can be found in [2], [18], [19]....

    [...]

Proceedings ArticleDOI
06 Jun 2005
TL;DR: The Horus system identifies different causes for the wireless channel variations and addresses them and uses location-clustering techniques to reduce the computational requirements of the algorithm and the lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.
Abstract: We present the design and implementation of the Horus WLAN location determination system. The design of the Horus system aims at satisfying two goals: high accuracy and low computational requirements. The Horus system identifies different causes for the wireless channel variations and addresses them to achieve its high accuracy. It uses location-clustering techniques to reduce the computational requirements of the algorithm. The lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.We discuss the different components of the Horus system and its implementation under two different operating systems and evaluate the performance of the Horus system on two testbeds. Our results show that the Horus system achieves its goal. It has an error of less than 0.6 meter on the average and its computational requirements are more than an order of magnitude better than other WLAN location determination systems. Moreover, the techniques developed in the context of the Horus system are general and can be applied to other WLAN location determination systems to enhance their accuracy. We also report lessons learned from experimenting with the Horus system and provide directions for future work.

1,631 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...Here the focus is on radio positioning, specifically using the empirical fingerprinting techniques [3], [15], [17], [22] that avoid the need to model the complex radio propagation environment indoors by patternmatching to a previously surveyed map of radio signal strengths....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours.
Abstract: With the continual miniaturisation of sensors and processing nodes, Pedestrian Dead Reckoning (PDR) systems are becoming feasible options for indoor tracking. These use inertial and other sensors, often combined with domain-specific knowledge about walking, to track user movements. There is currently a wealth of relevant literature spread across different research communities. In this survey, a taxonomy of modern PDRs is developed and used to contextualise the contributions from different areas. Techniques for step detection, characterisation, inertial navigation and step-and-heading-based dead-reckoning are reviewed and compared. Techniques that incorporate building maps through particle filters are analysed, along with hybrid systems that use absolute position fixes to correct dead-reckoning output. In addition, consideration is given to the possibility of using smartphones as PDR sensing devices. The survey concludes that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours. It concludes by identifying a detailed list of challenges for PDR researchers.

749 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...fingerprints with other sources to form hybrid systems, many of which are based on the idea of Simultaneous Localization and Mapping (SLAM) [10], [16] being applied to pedestrian dead reckoning [13]....

    [...]

01 Feb 2000
TL;DR: This paper analyzes shortcomings of the basic system, develops and evaluates solutions to address these shortcomings, and describes several new enhancements, including a novel access point-based environmental profiling scheme, and a Viterbi-like algorithm for continuous user tracking and disambiguation of candidate user locations.
Abstract: We address the problem of locating users inside buildings using a radio-frequency (RF) wireless LAN. A previous paper presented the basic design and a limited evaluation of a user-location system we have developed. In this paper, we analyze shortcomings of the basic system, and develop and evaluate solutions to address these shortcomings. Additionally, we describe several new enhancements, including a novel access point-based environmental profiling scheme, and a Viterbi-like algorithm for continuous user tracking and disambiguation of candidate user locations. Using extensive data collected from our deployment, we evaluate our system’s performance over multiple wireless LAN technologies and in different buildings on our campus. We also discuss significant practical issues that arise in implementing such a system. Our techniques are implemented purely in software and are easily deployable over a standard wireless LAN.

608 citations

01 Jun 2010
TL;DR: NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (N TPv3), described in RFC 1305, as well as previous versions of the protocol, are described.
Abstract: The Network Time Protocol (NTP) is widely used to synchronize computer clocks in the Internet. This document describes NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (NTPv3), described in RFC 1305, as well as previous versions of the protocol. NTPv4 includes a modified protocol header to accommodate the Internet Protocol version 6 address family. NTPv4 includes fundamental improvements in the mitigation and discipline algorithms that extend the potential accuracy to the tens of microseconds with modern workstations and fast LANs. It includes a dynamic server discovery scheme, so that in many cases, specific server configuration is not required. It corrects certain errors in the NTPv3 design and implementation and includes an optional extension mechanism. [STANDARDS-TRACK]

605 citations


"Location Fingerprinting With Blueto..." refers methods in this paper

  • ...Before each experiment, each clock was manually synchronized using a Network Time Protocol (NTP) server [20]....

    [...]