scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Location Fingerprinting With Bluetooth Low Energy Beacons

06 May 2015-IEEE Journal on Selected Areas in Communications (IEEE)-Vol. 33, Iss: 11, pp 2418-2428
TL;DR: This work provides a detailed study of BLE fingerprinting using 19 beacons distributed around a ~600 m2 testbed to position a consumer device, and investigates the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency.
Abstract: The complexity of indoor radio propagation has resulted in location-awareness being derived from empirical fingerprinting techniques, where positioning is performed via a previously-constructed radio map, usually of WiFi signals. The recent introduction of the Bluetooth Low Energy (BLE) radio protocol provides new opportunities for indoor location. It supports portable battery-powered beacons that can be easily distributed at low cost, giving it distinct advantages over WiFi. However, its differing use of the radio band brings new challenges too. In this work, we provide a detailed study of BLE fingerprinting using 19 beacons distributed around a $\sim\! 600\ \mbox{m}^2$ testbed to position a consumer device. We demonstrate the high susceptibility of BLE to fast fading, show how to mitigate this, and quantify the true power cost of continuous BLE scanning. We further investigate the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency. We also provide quantitative comparison with WiFi fingerprinting. Our results show advantages to the use of BLE beacons for positioning. For one-shot (push-to-fix) positioning we achieve $30\ \mbox{m}^2$ ), compared to $100\ \mbox{m}^2$ ) and < 8.5 m for an established WiFi network in the same area.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
01 May 2017
TL;DR: This work introduces a Bluetooth Low Energy-based infrastructure for location-aware buildings, along with a full-scale real-subject trial, and shows a proof-of-concept of deploying location- aware infrastructure through experimentally collecting data to facilitate building management and user localization.
Abstract: The increasing demand for smarter yet more efficient indoor spaces necessitates moving towards advanced technologies, such as Internet of Things architectures, to allow further integration to our physical world. In this work, we introduce a Bluetooth Low Energy-based infrastructure for location-aware buildings, along with a full-scale real-subject trial. The trial was undertaken with students in our engineering building at NC State, under IRB approval. Our focus is on showing a proof-of-concept of deploying location-aware infrastructure through experimentally collecting data able to facilitate building management and user localization. We examine a multi-floor environment installation and analytically prove how viable and economic our solution is to equip future intelligent facilities.

11 citations


Cites background from "Location Fingerprinting With Blueto..."

  • ...a smartphone) that acts as a scanner receiving signals from fixed transmitters [7], [8]....

    [...]

Proceedings ArticleDOI
25 Jun 2018
TL;DR: An adaptive advertising strategy is designed that allows smart objects to adapt their device discovery parameters to the user behavior and shows that a smart lock using this strategy consumes 48% less energy while reducing the device discovery time by up to 63% compared to the use of static parameters.
Abstract: The ability of fine-tuning the performance of Bluetooth Low Energy (BLE) communication is essential to create low-power wireless applications with heavy user interaction, such as smart thermostats or door locks. One of the key challenges when designing such applications is finding the right trade-off between a system's responsiveness and energy-efficiency. Although there exists research works that improve the performance of BLE communication, all these approaches focus on connection-based BLE. Most BLE-based applications, however, spend the majority of their time in connection-less device discovery, waiting for approaching users. The energy-efficiency and timeliness in this state are defined by parameters that are often statically set at compile time. Although supported by the BLE specifications, how to dynamically adapt these parameters to user behavior is still an open question. In this paper, we tackle this challenge and design a strategy to improve the energy-efficiency and responsiveness of BLE device discovery. Towards this goal, we model the device discovery process and identify its key parameters. We further design an adaptive advertising strategy that allows smart objects to adapt their device discovery parameters to the user behavior. We implement this adaptive strategy and measure its performance in a real-world application, the Nuki Smart Door Lock. Our experiments show that a smart lock using our strategy consumes 48% less energy while reducing the device discovery time by up to 63% compared to the use of static parameters. Furthermore, we discuss how nearby BLE devices can be used to inform the lock about approaching user devices and hence to improve its responsiveness in low-power phases even further.

11 citations


Cites background from "Location Fingerprinting With Blueto..."

  • ...A large body of works has focused on BLE technology, especially on the provision of services such as neighbor discovery [16], indoor localization [7], group management [11], and locality-based authorization [10], as well as on the design of new platforms [3]....

    [...]

Proceedings ArticleDOI
06 Nov 2018
TL;DR: This paper applies the idea of global map matching, used in the field of GPS, to route estimation based on BLE beacons, and finds that the global optimum route in beacon network can be estimated from the radio field intensities of the BLE beacon directly.
Abstract: Recently, location service using Bluetooth Low-Energy (BLE) beacon is gaining popularity. There also exist researches that estimate the route of the user from the location estimation results, visualize, and analyze it. In the conventional route estimation method based on the BLE beacon, after estimating the all locations from the radio field strength of the BLE, the route is estimated from the sequence of the estimated locations. Therefore, one of the causes of deterioration in accuracy could be the fact that the estimation was repeated twice. Therefore, in this paper, we propose a novel estimation method of the user's route and stay using BLE beacons. Specifically, we apply the idea of global map matching, used in the field of GPS, to route estimation based on BLE beacons. Thus, the global optimum route in beacon network can be estimated from the radio field intensities of the BLE beacon directly. We associate a beacon network with path network to estimate the route and stay of users. We installed approximately 1,600 BLE beacon transmitters in all the classrooms and corridors of Nagoya Institute of Technology, and confirmed the effectiveness of the proposed method by experiments.

11 citations


Cites methods from "Location Fingerprinting With Blueto..."

  • ...In addition, research on location estimation using BLE beacons also include the proximity method [15], particle filtering method [6, 23], trilateration [2], and fingerprint method [8, 13]....

    [...]

Proceedings ArticleDOI
13 Nov 2018
TL;DR: A novel and simplified probabilistic IMU motion model is developed as the proposal distribution of the sequential Monte-Carlo technique to track the robot trajectory using radio signal strength indicator, Inertial Measurement Unit, and magnetometer sensors for low-cost indoor localization and tracking problem.
Abstract: In this paper, we develop a system for the low-cost indoor localization and tracking problem using radio signal strength indicator, Inertial Measurement Unit (IMU), and magnetometer sensors. We develop a novel and simplified probabilistic IMU motion model as the proposal distribution of the sequential Monte-Carlo technique to track the robot trajectory. Our algorithm can globally localize and track a robot with a priori unknown location, given an informative prior map of the Bluetooth Low Energy (BLE) beacons. Also, we formulate the problem as an optimization problem that serves as the Backend of the algorithm mentioned above (Front-end). Thus, by simultaneously solving for the robot trajectory and the map of BLE beacons, we recover a continuous and smooth trajectory of the robot, corrected locations of the BLE beacons, and the time-varying IMU bias. The evaluations achieved using hardware show that through the proposed closed-loop system the localization performance can be improved; furthermore, the system becomes robust to the error in the map of beacons by feeding back the optimized map to the Front-end.

11 citations


Cites background from "Location Fingerprinting With Blueto..."

  • ...WiFi or radio signal fingerprint-based indoor positioning has become the standard approach for commercial applications [4], [5], [17], [18], [19]....

    [...]

Proceedings ArticleDOI
TL;DR: In this article, the authors developed a system for low-cost indoor localization and tracking problem using radio signal strength indicator, Inertial Measurement Unit (IMU), and magnetometer sensors.
Abstract: In this paper, we develop a system for the low-cost indoor localization and tracking problem using radio signal strength indicator, Inertial Measurement Unit (IMU), and magnetometer sensors. We develop a novel and simplified probabilistic IMU motion model as the proposal distribution of the sequential Monte-Carlo technique to track the robot trajectory. Our algorithm can globally localize and track a robot with a priori unknown location, given an informative prior map of the Bluetooth Low Energy (BLE) beacons. Also, we formulate the problem as an optimization problem that serves as the Back-end of the algorithm mentioned above (Front-end). Thus, by simultaneously solving for the robot trajectory and the map of BLE beacons, we recover a continuous and smooth trajectory of the robot, corrected locations of the BLE beacons, and the time-varying IMU bias. The evaluations achieved using hardware show that through the proposed closed-loop system the localization performance can be improved; furthermore, the system becomes robust to the error in the map of beacons by feeding back the optimized map to the Front-end.

11 citations

References
More filters
Journal ArticleDOI
01 Nov 2007
TL;DR: Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.
Abstract: Wireless indoor positioning systems have become very popular in recent years. These systems have been successfully used in many applications such as asset tracking and inventory management. This paper provides an overview of the existing wireless indoor positioning solutions and attempts to classify different techniques and systems. Three typical location estimation schemes of triangulation, scene analysis, and proximity are analyzed. We also discuss location fingerprinting in detail since it is used in most current system or solutions. We then examine a set of properties by which location systems are evaluated, and apply this evaluation method to survey a number of existing systems. Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.

4,123 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...Indoor positioning is a mature research field, with many proposed technologies and techniques—comprehensive overviews can be found in [2], [18], [19]....

    [...]

Proceedings ArticleDOI
06 Jun 2005
TL;DR: The Horus system identifies different causes for the wireless channel variations and addresses them and uses location-clustering techniques to reduce the computational requirements of the algorithm and the lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.
Abstract: We present the design and implementation of the Horus WLAN location determination system. The design of the Horus system aims at satisfying two goals: high accuracy and low computational requirements. The Horus system identifies different causes for the wireless channel variations and addresses them to achieve its high accuracy. It uses location-clustering techniques to reduce the computational requirements of the algorithm. The lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.We discuss the different components of the Horus system and its implementation under two different operating systems and evaluate the performance of the Horus system on two testbeds. Our results show that the Horus system achieves its goal. It has an error of less than 0.6 meter on the average and its computational requirements are more than an order of magnitude better than other WLAN location determination systems. Moreover, the techniques developed in the context of the Horus system are general and can be applied to other WLAN location determination systems to enhance their accuracy. We also report lessons learned from experimenting with the Horus system and provide directions for future work.

1,631 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...Here the focus is on radio positioning, specifically using the empirical fingerprinting techniques [3], [15], [17], [22] that avoid the need to model the complex radio propagation environment indoors by patternmatching to a previously surveyed map of radio signal strengths....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours.
Abstract: With the continual miniaturisation of sensors and processing nodes, Pedestrian Dead Reckoning (PDR) systems are becoming feasible options for indoor tracking. These use inertial and other sensors, often combined with domain-specific knowledge about walking, to track user movements. There is currently a wealth of relevant literature spread across different research communities. In this survey, a taxonomy of modern PDRs is developed and used to contextualise the contributions from different areas. Techniques for step detection, characterisation, inertial navigation and step-and-heading-based dead-reckoning are reviewed and compared. Techniques that incorporate building maps through particle filters are analysed, along with hybrid systems that use absolute position fixes to correct dead-reckoning output. In addition, consideration is given to the possibility of using smartphones as PDR sensing devices. The survey concludes that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours. It concludes by identifying a detailed list of challenges for PDR researchers.

749 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...fingerprints with other sources to form hybrid systems, many of which are based on the idea of Simultaneous Localization and Mapping (SLAM) [10], [16] being applied to pedestrian dead reckoning [13]....

    [...]

01 Feb 2000
TL;DR: This paper analyzes shortcomings of the basic system, develops and evaluates solutions to address these shortcomings, and describes several new enhancements, including a novel access point-based environmental profiling scheme, and a Viterbi-like algorithm for continuous user tracking and disambiguation of candidate user locations.
Abstract: We address the problem of locating users inside buildings using a radio-frequency (RF) wireless LAN. A previous paper presented the basic design and a limited evaluation of a user-location system we have developed. In this paper, we analyze shortcomings of the basic system, and develop and evaluate solutions to address these shortcomings. Additionally, we describe several new enhancements, including a novel access point-based environmental profiling scheme, and a Viterbi-like algorithm for continuous user tracking and disambiguation of candidate user locations. Using extensive data collected from our deployment, we evaluate our system’s performance over multiple wireless LAN technologies and in different buildings on our campus. We also discuss significant practical issues that arise in implementing such a system. Our techniques are implemented purely in software and are easily deployable over a standard wireless LAN.

608 citations

01 Jun 2010
TL;DR: NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (N TPv3), described in RFC 1305, as well as previous versions of the protocol, are described.
Abstract: The Network Time Protocol (NTP) is widely used to synchronize computer clocks in the Internet. This document describes NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (NTPv3), described in RFC 1305, as well as previous versions of the protocol. NTPv4 includes a modified protocol header to accommodate the Internet Protocol version 6 address family. NTPv4 includes fundamental improvements in the mitigation and discipline algorithms that extend the potential accuracy to the tens of microseconds with modern workstations and fast LANs. It includes a dynamic server discovery scheme, so that in many cases, specific server configuration is not required. It corrects certain errors in the NTPv3 design and implementation and includes an optional extension mechanism. [STANDARDS-TRACK]

605 citations


"Location Fingerprinting With Blueto..." refers methods in this paper

  • ...Before each experiment, each clock was manually synchronized using a Network Time Protocol (NTP) server [20]....

    [...]