scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Location Fingerprinting With Bluetooth Low Energy Beacons

06 May 2015-IEEE Journal on Selected Areas in Communications (IEEE)-Vol. 33, Iss: 11, pp 2418-2428
TL;DR: This work provides a detailed study of BLE fingerprinting using 19 beacons distributed around a ~600 m2 testbed to position a consumer device, and investigates the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency.
Abstract: The complexity of indoor radio propagation has resulted in location-awareness being derived from empirical fingerprinting techniques, where positioning is performed via a previously-constructed radio map, usually of WiFi signals. The recent introduction of the Bluetooth Low Energy (BLE) radio protocol provides new opportunities for indoor location. It supports portable battery-powered beacons that can be easily distributed at low cost, giving it distinct advantages over WiFi. However, its differing use of the radio band brings new challenges too. In this work, we provide a detailed study of BLE fingerprinting using 19 beacons distributed around a $\sim\! 600\ \mbox{m}^2$ testbed to position a consumer device. We demonstrate the high susceptibility of BLE to fast fading, show how to mitigate this, and quantify the true power cost of continuous BLE scanning. We further investigate the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency. We also provide quantitative comparison with WiFi fingerprinting. Our results show advantages to the use of BLE beacons for positioning. For one-shot (push-to-fix) positioning we achieve $30\ \mbox{m}^2$ ), compared to $100\ \mbox{m}^2$ ) and < 8.5 m for an established WiFi network in the same area.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This paper proposes a pixel threshold based eight-point method and an improved epipolar constraint algorithm to improve the robustness and accuracy of traditional visual positioning algorithm.
Abstract: Vision-based indoor positioning technology is a practical and effective method to solve the problem of indoor positioning and navigation. Compared to Bluetooth-based and WiFi-based positioning methods, vision-based positioning method can provide reliable and low-cost services using a camera without extra pre-deployed hardware. To improve the robustness and accuracy of traditional visual positioning algorithm, this paper proposes a pixel threshold based eight-point method and an improved epipolar constraint algorithm. The traditional eight-point method only uses Euclidean distance as a selection indicator for feature points. The pixel coordinates of some feature points are distorted when the positioning scene changes, which may cause mismatch. The proposed method introduces the pixel threshold constraint to improve the quality of output feature points. Further, the epipolar constraint algorithm is modified by adding a new cost function to improve the accuracy of fundamental matrix calculation, thereby improving the positioning precision. Performance simulation analysis shows that the proposed algorithm can effectively improve indoor positioning precision.

9 citations

OtherDOI
15 Jul 2022
TL;DR: In this article , the design principles of half-width microstrip leaky-wave antennas to produce directive beam scanning using the available frequency channels of different wireless networks is illustrated with practical examples.
Abstract: This chapter presents the practical application of low-cost printed-circuit frequency-scanning antennas for efficient wireless networks with smart functionalities. The design principles of half-width microstrip leaky-wave antennas to produce directive beam scanning using the available frequency channels of different wireless networks is illustrated with practical examples. It is demonstrated how these antennas can create a channel-dependent spatial sectorization, which facilitates their use for efficient wireless communications, indoor localization, and wireless power transfer. A careful cross-layer optimization that considers the electromagnetic response of the antenna together with the physical and data-link layers of the preferred protocol is needed in all of these cases. Design rules and application examples are given for some of the most widespread wireless networks in the frame of the Internet of things (IoT) using the ISM 900 MHz and 2.4 GHz bands, such as Wi-Fi, Bluetooth, Zigbee, LoRa, and passive RFID.

9 citations

Journal ArticleDOI
12 Jan 2020-Sensors
TL;DR: This evaluation helps gain valuable insight into the design and deployment of urban Wi-Fi positioning systems while also allowing the proposed system to match GPS-like accuracy in similar conditions.
Abstract: Wi-Fi fingerprinting positioning systems have been deployed for a long time in location-based services for indoor environments. Combining mobile crowdsensing and Wi-Fi fingerprinting systems could reduce the high cost of collecting the necessary data, enabling the deployment of the resulting system for outdoor positioning in areas with dense Wi-Fi coverage. In this paper, we present the results attained in the design and evaluation of an urban fingerprinting positioning system based on crowdsensed Wi-Fi measurements. We first assess the quality of the collected measurements, highlighting the influence of received signal strength on data collection. We then evaluate the proposed system by comparing the influence of the crowdsensed fingerprints on the overall positioning accuracy for different scenarios. This evaluation helps gain valuable insight into the design and deployment of urban Wi-Fi positioning systems while also allowing the proposed system to match GPS-like accuracy in similar conditions.

9 citations


Cites background from "Location Fingerprinting With Blueto..."

  • ...Other technologies that are readily available in smartphone devices used for crowdsensing, such as Bluetooth [9], cellular [10], accelerometers [11], magnetic sensors [12], or pedometers [13], can also be integrated in fingerprinting positioning systems as has been previously shown....

    [...]

Proceedings ArticleDOI
01 Jun 2018
TL;DR: This paper addresses the problem of automatic data collection for the purpose of indoor positioning via Received Signal Strength (RSS) fingerprinting by using a robotic platform with basic odometer sensors in an university building to automate the process of data acquisition.
Abstract: This paper addresses the problem of automatic data collection for the purpose of indoor positioning via Received Signal Strength (RSS) fingerprinting. A robotic platform with basic odometer sensors was used in an university building to automate the process of data acquisition which becomes particularly time consuming when considering mapping of large spaces such as shopping malls or hospitals. More than 3000 observations were collected. We associated for each observation their two dimensional coordinates with the received MAC RSS vector. Preprocessing methods included data augmentation and feature normalization. We searched for multiple models and one of the best performance was achieved by using neural networks and post-filtering.

8 citations


Cites background from "Location Fingerprinting With Blueto..."

  • ...It is well-known today that low-cost localization and tracking solutions can be achieved via Received Signal Strength (RSS) measurements from a variety of signals in range [4], such as cellular, WiFi [5], Bluetooth low Energy (BLE) [5], [6], Radio Frequency Identification (RFID) [7], [8], and, more recently Internet of Things (IoT) signals (e....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a system integrating the GNSS, pedestrian dead reckoning (PDR), and Bluetooth low energy (BLE) sensors is implemented in smartphones to provide a real-time positioning solution for pedestrians, which includes a new position correction method based on BLE heading, a reliable heading estimation integrating BLE and inertial sensors, an unconstrained step detection method with high accuracy, and an extended Kalman filter (EKF) to integrate multiple sensors and techniques.
Abstract: The global navigation satellite system (GNSS) is widely used in smartphone positioning, but its performance can be degraded in urban environments because of signal reflections or blockages To address these GNSS outages, pedestrian dead reckoning (PDR) is commonly used due to its significant improvements in both the stability and continuity of positioning, which are dependent on three key factors: continuous absolute position, heading and step information Signals of opportunity are commonly used in positioning, whereas the installation of Bluetooth low energy (BLE) sensors on lampposts can provide an opportunity for positioning and heading estimation in urban canyons In this article, a system integrating the GNSS, PDR, and BLE techniques is implemented in smartphones to provide a real-time positioning solution for pedestrians, which includes a new position correction method based on BLE heading, a reliable heading estimation integrating BLE and inertial sensors, an unconstrained step detection method with high accuracy, and an extended Kalman filter (EKF) to integrate multiple sensors and techniques In several field experiments, with improvements in availability and robustness, the heading accuracy of the proposed fusion approach could reach approximately 3 degrees; the positioning accuracy achieved between 27 m and 42 m, compared with a 30 m error from the GNSS alone Simultaneously, this system could achieve a high positioning accuracy of 24 m with unconstrained smartphones in a mixed environment The proposed system has been demonstrated to perform well in urban canyons

8 citations

References
More filters
Journal ArticleDOI
01 Nov 2007
TL;DR: Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.
Abstract: Wireless indoor positioning systems have become very popular in recent years. These systems have been successfully used in many applications such as asset tracking and inventory management. This paper provides an overview of the existing wireless indoor positioning solutions and attempts to classify different techniques and systems. Three typical location estimation schemes of triangulation, scene analysis, and proximity are analyzed. We also discuss location fingerprinting in detail since it is used in most current system or solutions. We then examine a set of properties by which location systems are evaluated, and apply this evaluation method to survey a number of existing systems. Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.

4,123 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...Indoor positioning is a mature research field, with many proposed technologies and techniques—comprehensive overviews can be found in [2], [18], [19]....

    [...]

Proceedings ArticleDOI
06 Jun 2005
TL;DR: The Horus system identifies different causes for the wireless channel variations and addresses them and uses location-clustering techniques to reduce the computational requirements of the algorithm and the lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.
Abstract: We present the design and implementation of the Horus WLAN location determination system. The design of the Horus system aims at satisfying two goals: high accuracy and low computational requirements. The Horus system identifies different causes for the wireless channel variations and addresses them to achieve its high accuracy. It uses location-clustering techniques to reduce the computational requirements of the algorithm. The lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.We discuss the different components of the Horus system and its implementation under two different operating systems and evaluate the performance of the Horus system on two testbeds. Our results show that the Horus system achieves its goal. It has an error of less than 0.6 meter on the average and its computational requirements are more than an order of magnitude better than other WLAN location determination systems. Moreover, the techniques developed in the context of the Horus system are general and can be applied to other WLAN location determination systems to enhance their accuracy. We also report lessons learned from experimenting with the Horus system and provide directions for future work.

1,631 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...Here the focus is on radio positioning, specifically using the empirical fingerprinting techniques [3], [15], [17], [22] that avoid the need to model the complex radio propagation environment indoors by patternmatching to a previously surveyed map of radio signal strengths....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours.
Abstract: With the continual miniaturisation of sensors and processing nodes, Pedestrian Dead Reckoning (PDR) systems are becoming feasible options for indoor tracking. These use inertial and other sensors, often combined with domain-specific knowledge about walking, to track user movements. There is currently a wealth of relevant literature spread across different research communities. In this survey, a taxonomy of modern PDRs is developed and used to contextualise the contributions from different areas. Techniques for step detection, characterisation, inertial navigation and step-and-heading-based dead-reckoning are reviewed and compared. Techniques that incorporate building maps through particle filters are analysed, along with hybrid systems that use absolute position fixes to correct dead-reckoning output. In addition, consideration is given to the possibility of using smartphones as PDR sensing devices. The survey concludes that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours. It concludes by identifying a detailed list of challenges for PDR researchers.

749 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...fingerprints with other sources to form hybrid systems, many of which are based on the idea of Simultaneous Localization and Mapping (SLAM) [10], [16] being applied to pedestrian dead reckoning [13]....

    [...]

01 Feb 2000
TL;DR: This paper analyzes shortcomings of the basic system, develops and evaluates solutions to address these shortcomings, and describes several new enhancements, including a novel access point-based environmental profiling scheme, and a Viterbi-like algorithm for continuous user tracking and disambiguation of candidate user locations.
Abstract: We address the problem of locating users inside buildings using a radio-frequency (RF) wireless LAN. A previous paper presented the basic design and a limited evaluation of a user-location system we have developed. In this paper, we analyze shortcomings of the basic system, and develop and evaluate solutions to address these shortcomings. Additionally, we describe several new enhancements, including a novel access point-based environmental profiling scheme, and a Viterbi-like algorithm for continuous user tracking and disambiguation of candidate user locations. Using extensive data collected from our deployment, we evaluate our system’s performance over multiple wireless LAN technologies and in different buildings on our campus. We also discuss significant practical issues that arise in implementing such a system. Our techniques are implemented purely in software and are easily deployable over a standard wireless LAN.

608 citations

01 Jun 2010
TL;DR: NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (N TPv3), described in RFC 1305, as well as previous versions of the protocol, are described.
Abstract: The Network Time Protocol (NTP) is widely used to synchronize computer clocks in the Internet. This document describes NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (NTPv3), described in RFC 1305, as well as previous versions of the protocol. NTPv4 includes a modified protocol header to accommodate the Internet Protocol version 6 address family. NTPv4 includes fundamental improvements in the mitigation and discipline algorithms that extend the potential accuracy to the tens of microseconds with modern workstations and fast LANs. It includes a dynamic server discovery scheme, so that in many cases, specific server configuration is not required. It corrects certain errors in the NTPv3 design and implementation and includes an optional extension mechanism. [STANDARDS-TRACK]

605 citations


"Location Fingerprinting With Blueto..." refers methods in this paper

  • ...Before each experiment, each clock was manually synchronized using a Network Time Protocol (NTP) server [20]....

    [...]