scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Location Fingerprinting With Bluetooth Low Energy Beacons

06 May 2015-IEEE Journal on Selected Areas in Communications (IEEE)-Vol. 33, Iss: 11, pp 2418-2428
TL;DR: This work provides a detailed study of BLE fingerprinting using 19 beacons distributed around a ~600 m2 testbed to position a consumer device, and investigates the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency.
Abstract: The complexity of indoor radio propagation has resulted in location-awareness being derived from empirical fingerprinting techniques, where positioning is performed via a previously-constructed radio map, usually of WiFi signals. The recent introduction of the Bluetooth Low Energy (BLE) radio protocol provides new opportunities for indoor location. It supports portable battery-powered beacons that can be easily distributed at low cost, giving it distinct advantages over WiFi. However, its differing use of the radio band brings new challenges too. In this work, we provide a detailed study of BLE fingerprinting using 19 beacons distributed around a $\sim\! 600\ \mbox{m}^2$ testbed to position a consumer device. We demonstrate the high susceptibility of BLE to fast fading, show how to mitigate this, and quantify the true power cost of continuous BLE scanning. We further investigate the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency. We also provide quantitative comparison with WiFi fingerprinting. Our results show advantages to the use of BLE beacons for positioning. For one-shot (push-to-fix) positioning we achieve $30\ \mbox{m}^2$ ), compared to $100\ \mbox{m}^2$ ) and < 8.5 m for an established WiFi network in the same area.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
01 Jul 2017
TL;DR: There is a problem that the received signal strength (RSS) is not stable but fluctuating, and a method is proposed how to find the bias level and how to compensate these biased RSS measurements.
Abstract: In wireless positioning systems, there are several techniques and features for location estimation of device or user. Global navigation satellite system (GNSS) is representative, but because of some advantages, Bluetooth low energy (BLE) beacon devices are also attracting attention as an alternative of conventional positioning systems. It is the reason that BLE beacons are small, inexpensive and power-efficient device that appropriate for internet of things (IoT) which is a promising future technology. However, there is a problem that the received signal strength (RSS) is not stable but fluctuating. Moreover, these RSS measurements are measured quite differently in same distance by beacon device, even the beacons are from the same manufacturer. We call this problem in RSS bias problem, and we proposed a method how to find the bias level and how to compensate these biased RSS measurements.

2 citations


Cites background from "Location Fingerprinting With Blueto..."

  • ...0 specification called Bluetooth low energy (BLE) has been introduced recently, making Bluetooth more suitable for positioning systems[2]....

    [...]

Posted Content
TL;DR: In this article, the authors proposed a novel, yet practical smartphone-based contact tracing approach, employing WiFi and acoustic sound for relative distance estimate, in addition to the air pressure and the magnetic field for ambient environment matching.
Abstract: Contact tracing is widely considered as an effective procedure in the fight against epidemic diseases. However, one of the challenges for technology based contact tracing is the high number of false positives, questioning its trust-worthiness and efficiency amongst the wider population for mass adoption. To this end, this paper proposes a novel, yet practical smartphone-based contact tracing approach, employing WiFi and acoustic sound for relative distance estimate, in addition to the air pressure and the magnetic field for ambient environment matching. We present a model combining 6 smartphone sensors, prioritising some of them when certain conditions are met. We empirically verified our approach in various realistic environments to demonstrate an achievement of up to 95% fewer false positives, and 62% more accurate than Bluetooth-only system. To the best of our knowledge, this paper was one of the first work to propose a combination of smartphone sensors for contact tracing.

2 citations

Dissertation
01 Jan 2016
TL;DR: This thesis presents fully-integrated hardware and software systems with working, phonebased prototype deployments in cities to build and rapidly deploy pervasive, widespread, infrastructure-less intelligent transportation systems (ITS) that can address the needs of future smart cities.
Abstract: Urban transportation is becoming increasingly intelligent and connected, with the potential for high societal, economic, and environmental impact as it changes the way we work and live in cities. Mobile apps today already provide navigation, transit prediction, mobility-on-demand, and other transportation services. Other urban transportation challenges, such as managing traffic congestion with high granularity and wide coverage, accessing real-time transportation and city information on-thego, and deploying driver-less vehicles at scale, are still difficult to address pervasively because existing approaches require costly and slow-to-deploy infrastructure. Our goal is to leverage the technological and marketplace forces of the mobile revolution to build and rapidly deploy pervasive, widespread, infrastructure-less intelligent transportation systems (ITS) that can address the needs of future smart cities. This thesis presents fully-integrated hardware and software systems with working, phonebased prototype deployments in cities. By focusing on pushing new technologies into the device rather than infrastructure, we can realize future ITS for smart cities more rapidly. Together, these systems enable a foundation for resilient, next-generation ITS apps that blur the line between city and software. In the first part of this thesis, we observe the trend of increasingly diverse and varied wireless communications interfaces available on mobile phones, and design and build a prototype of an 802.11p radio that is suited for the power and size constraints mobile devices, allowing them to communicate directly with each other without routing through a router or cellular network. Our evaluation shows reductions in power consumption of 47-56% compared to an off-the-shelf 802.11p radio, and a significantly reduced system footprint, showing that 802.11p can be integrated as a future wireless communications interface on mobile devices. We then propose and design a future ITS application that leverages device-todevice (D2D) communications to enable highly granular, widespread traffic management in cities: RoadRunner. We evaluate RoadRunner with both simulation studies and an experimental deployment on real vehicles to show that it achieves fine-grained traffic management and reduces traffic congestion, while eliminating the need for the

2 citations

Proceedings ArticleDOI
10 Nov 2021
TL;DR: In this paper, the authors proposed HarvestPrint, which leverages these fingerprints to differentiate authentic backscatter transmissions from imposter transmissions, thus safeguarding data integrity and improving battery life.
Abstract: Backscatter enables wireless transmissions at dramatically lower power compared to mainstream Internet of Things (IoT) transmitters. This significantly improves battery life or even eliminates the need of batteries for backscatter-based 'tags' operating on energy harvested from the environment. However, trading off complexity for low power consumption exposing backscatter tags to a multitude of security risks. A significant challenge is imposter tags that mimic legitimate tag behaviour, compromising the system data integrity. In this work, we argue that tag simplicity and operation on harvested energy can help identify imposter transmissions, thus safeguarding data integrity. Our experimental study reveals that commonly used low-power tag oscillators demonstrate unique fingerprint patterns when exposed to the dynamics of harvested energy. Based on this observation, we design and propose HarvestPrint, which leverages these fingerprints to differentiate authentic backscatter transmissions from imposter transmissions. Experiments with a tag powered through a small solar cell show the potential of HarvestPrint.

2 citations

References
More filters
Journal ArticleDOI
01 Nov 2007
TL;DR: Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.
Abstract: Wireless indoor positioning systems have become very popular in recent years. These systems have been successfully used in many applications such as asset tracking and inventory management. This paper provides an overview of the existing wireless indoor positioning solutions and attempts to classify different techniques and systems. Three typical location estimation schemes of triangulation, scene analysis, and proximity are analyzed. We also discuss location fingerprinting in detail since it is used in most current system or solutions. We then examine a set of properties by which location systems are evaluated, and apply this evaluation method to survey a number of existing systems. Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.

4,123 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...Indoor positioning is a mature research field, with many proposed technologies and techniques—comprehensive overviews can be found in [2], [18], [19]....

    [...]

Proceedings ArticleDOI
06 Jun 2005
TL;DR: The Horus system identifies different causes for the wireless channel variations and addresses them and uses location-clustering techniques to reduce the computational requirements of the algorithm and the lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.
Abstract: We present the design and implementation of the Horus WLAN location determination system. The design of the Horus system aims at satisfying two goals: high accuracy and low computational requirements. The Horus system identifies different causes for the wireless channel variations and addresses them to achieve its high accuracy. It uses location-clustering techniques to reduce the computational requirements of the algorithm. The lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.We discuss the different components of the Horus system and its implementation under two different operating systems and evaluate the performance of the Horus system on two testbeds. Our results show that the Horus system achieves its goal. It has an error of less than 0.6 meter on the average and its computational requirements are more than an order of magnitude better than other WLAN location determination systems. Moreover, the techniques developed in the context of the Horus system are general and can be applied to other WLAN location determination systems to enhance their accuracy. We also report lessons learned from experimenting with the Horus system and provide directions for future work.

1,631 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...Here the focus is on radio positioning, specifically using the empirical fingerprinting techniques [3], [15], [17], [22] that avoid the need to model the complex radio propagation environment indoors by patternmatching to a previously surveyed map of radio signal strengths....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours.
Abstract: With the continual miniaturisation of sensors and processing nodes, Pedestrian Dead Reckoning (PDR) systems are becoming feasible options for indoor tracking. These use inertial and other sensors, often combined with domain-specific knowledge about walking, to track user movements. There is currently a wealth of relevant literature spread across different research communities. In this survey, a taxonomy of modern PDRs is developed and used to contextualise the contributions from different areas. Techniques for step detection, characterisation, inertial navigation and step-and-heading-based dead-reckoning are reviewed and compared. Techniques that incorporate building maps through particle filters are analysed, along with hybrid systems that use absolute position fixes to correct dead-reckoning output. In addition, consideration is given to the possibility of using smartphones as PDR sensing devices. The survey concludes that PDR techniques alone can offer good short- to medium- term tracking under certain circumstances, but that regular absolute position fixes from partner systems will be needed to ensure long-term operation and to cope with unexpected behaviours. It concludes by identifying a detailed list of challenges for PDR researchers.

749 citations


"Location Fingerprinting With Blueto..." refers background in this paper

  • ...fingerprints with other sources to form hybrid systems, many of which are based on the idea of Simultaneous Localization and Mapping (SLAM) [10], [16] being applied to pedestrian dead reckoning [13]....

    [...]

01 Feb 2000
TL;DR: This paper analyzes shortcomings of the basic system, develops and evaluates solutions to address these shortcomings, and describes several new enhancements, including a novel access point-based environmental profiling scheme, and a Viterbi-like algorithm for continuous user tracking and disambiguation of candidate user locations.
Abstract: We address the problem of locating users inside buildings using a radio-frequency (RF) wireless LAN. A previous paper presented the basic design and a limited evaluation of a user-location system we have developed. In this paper, we analyze shortcomings of the basic system, and develop and evaluate solutions to address these shortcomings. Additionally, we describe several new enhancements, including a novel access point-based environmental profiling scheme, and a Viterbi-like algorithm for continuous user tracking and disambiguation of candidate user locations. Using extensive data collected from our deployment, we evaluate our system’s performance over multiple wireless LAN technologies and in different buildings on our campus. We also discuss significant practical issues that arise in implementing such a system. Our techniques are implemented purely in software and are easily deployable over a standard wireless LAN.

608 citations

01 Jun 2010
TL;DR: NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (N TPv3), described in RFC 1305, as well as previous versions of the protocol, are described.
Abstract: The Network Time Protocol (NTP) is widely used to synchronize computer clocks in the Internet. This document describes NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (NTPv3), described in RFC 1305, as well as previous versions of the protocol. NTPv4 includes a modified protocol header to accommodate the Internet Protocol version 6 address family. NTPv4 includes fundamental improvements in the mitigation and discipline algorithms that extend the potential accuracy to the tens of microseconds with modern workstations and fast LANs. It includes a dynamic server discovery scheme, so that in many cases, specific server configuration is not required. It corrects certain errors in the NTPv3 design and implementation and includes an optional extension mechanism. [STANDARDS-TRACK]

605 citations


"Location Fingerprinting With Blueto..." refers methods in this paper

  • ...Before each experiment, each clock was manually synchronized using a Network Time Protocol (NTP) server [20]....

    [...]