scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Location privacy in pervasive computing

01 Jan 2003-IEEE Pervasive Computing (IEEE Computer Society)-Vol. 2, Iss: 1, pp 46-55
TL;DR: The mix zone is introduced-a new construction inspired by anonymous communication techniques-together with metrics for assessing user anonymity, based on frequently changing pseudonyms.
Abstract: As location-aware applications begin to track our movements in the name of convenience, how can we protect our privacy? This article introduces the mix zone-a new construction inspired by anonymous communication techniques-together with metrics for assessing user anonymity. It is based on frequently changing pseudonyms.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of numerous IPSs, which include both commercial products and research-oriented solutions are given, and the trade-offs among these systems are outlined from the viewpoint of a user in a PN.
Abstract: Recently, indoor positioning systems (IPSs) have been designed to provide location information of persons and devices. The position information enables location-based protocols for user applications. Personal networks (PNs) are designed to meet the users' needs and interconnect users' devices equipped with different communications technologies in various places to form one network. Location-aware services need to be developed in PNs to offer flexible and adaptive personal services and improve the quality of lives. This paper gives a comprehensive survey of numerous IPSs, which include both commercial products and research-oriented solutions. Evaluation criteria are proposed for assessing these systems, namely security and privacy, cost, performance, robustness, complexity, user preferences, commercial availability, and limitations.We compare the existing IPSs and outline the trade-offs among these systems from the viewpoint of a user in a PN.

1,538 citations

Journal ArticleDOI
Yu Zheng1
TL;DR: A systematic survey on the major research into trajectory data mining, providing a panorama of the field as well as the scope of its research topics, and introduces the methods that transform trajectories into other data formats, such as graphs, matrices, and tensors.
Abstract: The advances in location-acquisition and mobile computing techniques have generated massive spatial trajectory data, which represent the mobility of a diversity of moving objects, such as people, vehicles, and animals. Many techniques have been proposed for processing, managing, and mining trajectory data in the past decade, fostering a broad range of applications. In this article, we conduct a systematic survey on the major research into trajectory data mining, providing a panorama of the field as well as the scope of its research topics. Following a road map from the derivation of trajectory data, to trajectory data preprocessing, to trajectory data management, and to a variety of mining tasks (such as trajectory pattern mining, outlier detection, and trajectory classification), the survey explores the connections, correlations, and differences among these existing techniques. This survey also introduces the methods that transform trajectories into other data formats, such as graphs, matrices, and tensors, to which more data mining and machine learning techniques can be applied. Finally, some public trajectory datasets are presented. This survey can help shape the field of trajectory data mining, providing a quick understanding of this field to the community.

1,289 citations

Proceedings ArticleDOI
01 Sep 2006
TL;DR: Zhang et al. as mentioned in this paper presented Casper1, a new framework in which mobile and stationary users can entertain location-based services without revealing their location information, which consists of two main components, the location anonymizer and the privacy-aware query processor.
Abstract: This paper tackles a major privacy concern in current location-based services where users have to continuously report their locations to the database server in order to obtain the service. For example, a user asking about the nearest gas station has to report her exact location. With untrusted servers, reporting the location information may lead to several privacy threats. In this paper, we present Casper1; a new framework in which mobile and stationary users can entertain location-based services without revealing their location information. Casper consists of two main components, the location anonymizer and the privacy-aware query processor. The location anonymizer blurs the users' exact location information into cloaked spatial regions based on user-specified privacy requirements. The privacy-aware query processor is embedded inside the location-based database server in order to deal with the cloaked spatial areas rather than the exact location information. Experimental results show that Casper achieves high quality location-based services while providing anonymity for both data and queries.

1,239 citations

Proceedings ArticleDOI
11 Jul 2005
TL;DR: This paper proposes an anonymous communication technique to protect the location privacy of the users of location-based services and describes a cost reduction technique for communication between a client and a server.
Abstract: Recently, highly accurate positioning devices enable us to provide various types of location-based services. On the other hand, because such position data include deeply personal information, the protection of location privacy is one of the most significant problems in location-based services. In this paper, we propose an anonymous communication technique to protect the location privacy of the users of location-based services. In our proposed technique, such users generate several false position data (dummies) to send to service providers with the true position data of users. Because service providers cannot distinguish the true position data, user location privacy is protected. We also describe a cost reduction technique for communication between a client and a server. Moreover, we conducted performance study experiments on our proposed technique using practical position data. As a result of the experiments, we observed that our proposed technique protects the location privacy of people and can sufficiently reduce communication costs so that our communication techniques can be applied in practical location-based services.

743 citations


Cites background from "Location privacy in pervasive compu..."

  • ...In other words, users cannot prevent service providers from analyzing motion patterns using the stored true position data [3]....

    [...]

  • ...Beresford conjectured that the cost of an anonymous technique using dummy users might be too high in realworld services [3]....

    [...]

  • ...A prior work on location privacy is Mix Zones [3], which is similar to mix networks....

    [...]

  • ...Beresford and Stajano defined location privacy as “the ability to prevent other parties from learning one’s current or past location” [3]....

    [...]

  • ...In Mix Zones, infrastructure provides an anonymous service using pseudonyms that collects and reorders messages from users within a mix zone to confuse observers....

    [...]

Journal ArticleDOI
John Krumm1
01 Aug 2009
TL;DR: This is a literature survey of computational location privacy, meaning computation-based privacy mechanisms that treat location data as geometric information, which includes privacy-preserving algorithms like anonymity and obfuscation as well as privacy-breaking algorithms that exploit the geometric nature of the data.
Abstract: This is a literature survey of computational location privacy, meaning computation-based privacy mechanisms that treat location data as geometric information. This definition includes privacy-preserving algorithms like anonymity and obfuscation as well as privacy-breaking algorithms that exploit the geometric nature of the data. The survey omits non-computational techniques like manually inspecting geotagged photos, and it omits techniques like encryption or access control that treat location data as general symbols. The paper reviews studies of peoples' attitudes about location privacy, computational threats on leaked location data, and computational countermeasures for mitigating these threats.

732 citations

References
More filters
Journal ArticleDOI
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.

65,425 citations

Journal ArticleDOI
TL;DR: A novel system for the location of people in an office environment is described, where members of staff wear badges that transmit signals providing information about their location to a centralized location service, through a network of sensors.
Abstract: A novel system for the location of people in an office environment is described. Members of staff wear badges that transmit signals providing information about their location to a centralized location service, through a network of sensors. The paper also examines alternative location techniques, system design issues and applications, particularly relating to telephone call routing. Location systems raise concerns about the privacy of an individual and these issues are also addressed.

4,315 citations

Proceedings ArticleDOI
01 Aug 2000
TL;DR: The randomized algorithm used by beacons to transmit information, the use of concurrent radio and ultrasonic signals to infer distance, the listener inference algorithms to overcome multipath and interference, and practical beacon configuration and positioning techniques that improve accuracy are described.
Abstract: This paper presents the design, implementation, and evaluation of Cricket, a location-support system for in-building, mobile, location-dependent applications. It allows applications running on mobile and static nodes to learn their physical location by using listeners that hear and analyze information from beacons spread throughout the building. Cricket is the result of several design goals, including user privacy, decentralized administration, network heterogeneity, and low cost. Rather than explicitly tracking user location, Cricket helps devices learn where they are and lets them decide whom to advertise this information to; it does not rely on any centralized management or control and there is no explicit coordination between beacons; it provides information to devices regardless of their type of network connectivity; and each Cricket device is made from off-the-shelf components and costs less than U.S. $10. We describe the randomized algorithm used by beacons to transmit information, the use of concurrent radio and ultrasonic signals to infer distance, the listener inference algorithms to overcome multipath and interference, and practical beacon configuration and positioning techniques that improve accuracy. Our experience with Cricket shows that several location-dependent applications such as in-building active maps and device control can be developed with little effort or manual configuration.

4,123 citations

Journal ArticleDOI
TL;DR: A technique based on public key cryptography is presented that allows an electronic mail system to hide who a participant communicates with as well as the content of the communication - in spite of an unsecured underlying telecommunication system.
Abstract: A technique based on public key cryptography is presented that allows an electronic mail system to hide who a participant communicates with as well as the content of the communication - in spite of an unsecured underlying telecommunication system. The technique does not require a universally trusted authority. One correspondent can remain anonymous to a second, while allowing the second to respond via an untraceable return address. The technique can also be used to form rosters of untraceable digital pseudonyms from selected applications. Applicants retain the exclusive ability to form digital signatures corresponding to their pseudonyms. Elections in which any interested party can verify that the ballots have been properly counted are possible if anonymously mailed ballots are signed with pseudonyms from a roster of registered voters. Another use allows an individual to correspond with a record-keeping organization under a unique pseudonym, which appears in a roster of acceptable clients.

4,075 citations

01 Jan 2003
TL;DR: In this article, a technique based on public key cryptography is presented that allows an electronic mail system to hide who a participant communicates with as well as the content of the communication -in spite of an unsecured underlying telecommunication system.
Abstract: A technique based on public key cryptography is presented that allows an electronic mail system to hide who a participant communicates with as well as the content of the communication - in spite of an unsecured underlying telecommunication system. The technique does not require a universally trusted authority. One correspondent can remain anonymous to a second, while allowing the second to respond via an untraceable return address. The technique can also be used to form rosters of untraceable digital pseudonyms from selected applications. Applicants retain the exclusive ability to form digital signatures corresponding to their pseudonyms. Elections in which any interested party can verify that the ballots have been properly counted are possible if anonymously mailed ballots are signed with pseudonyms from a roster of registered voters. Another use allows an individual to correspond with a record-keeping organization under a unique pseudonym, which appears in a roster of acceptable clients.

2,819 citations