scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Locations of marine animals revealed by carbon isotopes

TL;DR: It is shown that marine location can be inferred from animal tissues, and carbon isotope ratios can be used to identify the location of open ocean feeding grounds for any pelagic animals for which tissue archives and matching records of sea surface temperature are available.
Abstract: Knowing the distribution of marine animals is central to understanding climatic and other environmental influences on population ecology. This information has proven difficult to gain through capture-based methods biased by capture location. Here we show that marine location can be inferred from animal tissues. As the carbon isotope composition of animal tissues varies with sea surface temperature, marine location can be identified by matching time series of carbon isotopes measured in tissues to sea surface temperature records. Applying this technique to populations of Atlantic salmon (Salmo salar L.) produces isotopically-derived maps of oceanic feeding grounds, consistent with the current understanding of salmon migrations, that additionally reveal geographic segregation in feeding grounds between individual philopatric populations and age-classes. Carbon isotope ratios can be used to identify the location of open ocean feeding grounds for any pelagic animals for which tissue archives and matching records of sea surface temperature are available.

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive meta-analysis of organic zooplankton values at the base of the food web, dissolved inorganic carbon δ13C values, and seawater δ18O values to create, for the first time, robust isoscapes for the Atlantic Ocean is presented.
Abstract: Ecogeochemistry—the application of geochemical techniques to fundamental questions in population and community ecology—has been used in animal migration studies in terrestrial environments for several decades; however, the approach has received far less attention in marine systems. This review includes comprehensive meta-analyses of organic zooplankton δ13C and δ15N values at the base of the food web, dissolved inorganic carbon δ13C values, and seawater δ18O values to create, for the first time, robust isoscapes for the Atlantic Ocean. These isoscapes present far greater geographic variability in multiple geochemical tracers than was previously thought, thus forming the foundation for reconstructions of habitat use and migration patterns of marine organisms. We review several additional tracers, including trace-element-to-calcium ratios and heavy element stable isotopes, to examine anadromous migrations. We highlight the value of the ecogeochemistry approach by examining case studies on three components of connectivity: dispersal and natal homing, functional connectivity, and migratory connectivity. We also discuss recent advances in compound-specific stable carbon and nitrogen isotope analyses for tracking animal movement. A better understanding of isotopic routing and fractionation factors, particularly of individual compound classes, is necessary to realize the full potential of ecogeochemistry.

301 citations


Cites background from "Locations of marine animals reveale..."

  • ...MacKenzie et al. (2011) found that fish returning to different rivers around the U.K. over an 18 yr period had consistently distinct d13C values in scale material deposited during ocean residency....

    [...]

  • ...Conventional tagging studies had been unable to resolve questions of the location of ocean residency despite a million salmon tagged since the 1950s in English and Welsh rivers (MacKenzie et al. 2011)....

    [...]

  • ...More recently, ecogeochemistry approaches have been used to identify natal origins of ocean-phase anadromous fish (Walther and Thorrold 2010) and to locate marine feeding grounds of anadromous fish caught upon returning to natal rivers to spawn (MacKenzie et al. 2011)....

    [...]

Journal ArticleDOI
TL;DR: This meta-analysis clarifies the advantages and limitations of using individual δ15N AA values as tools in trophic ecology and provides a guideline for the future application of AA-CSIA to food web studies.
Abstract: Estimating trophic structures is a common approach used to retrieve information regarding energy pathways, predation, and competition in complex ecosystems. The application of amino acid (AA) compound-specific nitrogen (N) isotope analysis (CSIA) is a relatively new method used to estimate trophic position (TP) and feeding relationships in diverse organisms. Here, we conducted the first meta-analysis of δ(15)N AA values from measurements of 359 marine species covering four trophic levels, and compared TP estimates from AA-CSIA to literature values derived from food items, gut or stomach content analysis. We tested whether the AA trophic enrichment factor (TEF), or the (15)N enrichment among different individual AAs is constant across trophic levels and whether inclusion of δ(15)N values from multiple AAs improves TP estimation. For the TEF of glutamic acid relative to phenylalanine (Phe) we found an average value of 6.6‰ across all taxa, which is significantly lower than the commonly applied 7.6‰. We found that organism feeding ecology influences TEF values of several trophic AAs relative to Phe, with significantly higher TEF values for herbivores compared to omnivores and carnivores, while TEF values were also significantly lower for animals excreting urea compared to ammonium. Based on the comparison of multiple model structures using the metadata of δ(15)N AA values we show that increasing the number of AAs in principle improves precision in TP estimation. This meta-analysis clarifies the advantages and limitations of using individual δ(15)N AA values as tools in trophic ecology and provides a guideline for the future application of AA-CSIA to food web studies.

147 citations

Journal ArticleDOI
29 May 2012-PLOS ONE
TL;DR: The forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species’ imminent risk of extinction in the Pacific.
Abstract: Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ15N values of bulk skin, with distinct “low δ15N” and “high δ15N” groups. δ15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species’ imminent risk of extinction in the Pacific.

137 citations

References
More filters
Journal ArticleDOI
TL;DR: HadISST1 as mentioned in this paper replaces the global sea ice and sea surface temperature (GISST) data sets and is a unique combination of monthly globally complete fields of SST and sea ice concentration on a 1° latitude-longitude grid from 1871.
Abstract: [1] We present the Met Office Hadley Centre's sea ice and sea surface temperature (SST) data set, HadISST1, and the nighttime marine air temperature (NMAT) data set, HadMAT1. HadISST1 replaces the global sea ice and sea surface temperature (GISST) data sets and is a unique combination of monthly globally complete fields of SST and sea ice concentration on a 1° latitude-longitude grid from 1871. The companion HadMAT1 runs monthly from 1856 on a 5° latitude-longitude grid and incorporates new corrections for the effect on NMAT of increasing deck (and hence measurement) heights. HadISST1 and HadMAT1 temperatures are reconstructed using a two-stage reduced-space optimal interpolation procedure, followed by superposition of quality-improved gridded observations onto the reconstructions to restore local detail. The sea ice fields are made more homogeneous by compensating satellite microwave-based sea ice concentrations for the impact of surface melt effects on retrievals in the Arctic and for algorithm deficiencies in the Antarctic and by making the historical in situ concentrations consistent with the satellite data. SSTs near sea ice are estimated using statistical relationships between SST and sea ice concentration. HadISST1 compares well with other published analyses, capturing trends in global, hemispheric, and regional SST well, containing SST fields with more uniform variance through time and better month-to-month persistence than those in GISST. HadMAT1 is more consistent with SST and with collocated land surface air temperatures than previous NMAT data sets.

8,958 citations

Journal ArticleDOI
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.

5,562 citations

01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations


"Locations of marine animals reveale..." refers background in this paper

  • ...Scale d 13 C values are, however, linearly related to the isotopic composition of other body tissues across multiple genera, under differing diet conditions and growth rate...

    [...]

Journal ArticleDOI
06 Feb 1998-Science
TL;DR: The mean trophic level of the species groups reported in Food and Agricultural Organization global fisheries statistics declined from 1950 to 1994, and results indicate that present exploitation patterns are unsustainable.
Abstract: The mean trophic level of the species groups reported in Food and Agricultural Organization global fisheries statistics declined from 1950 to 1994. This reflects a gradual transition in landings from long-lived, high trophic level, piscivorous bottom fish toward short-lived, low trophic level invertebrates and planktivorous pelagic fish. This effect, also found to be occurring in inland fisheries, is most pronounced in the Northern Hemisphere. Fishing down food webs (that is, at lower trophic levels) leads at first to increasing catches, then to a phase transition associated with stagnating or declining catches. These results indicate that present exploitation patterns are unsustainable.

4,397 citations

Book
01 Jan 1977
TL;DR: The roots of isotope geology can be found in this paper, where a geology of Neodymium and Strontium in meteorites and Igneous rocks is described.
Abstract: The Roots of Isotope Geology. The Internal Structure of Atoms. Decay Mechanisms of Radioactive Atoms. Radioactive Decay and Growth. Mass Spectrometry. The K-Ar Method of Dating. The 40 Ar/39 Ar Method of Dating. The Rb-Sr Method of Dating. Two-Component Mixtures. Isotope Geology of Strontium in Meteorites and Igneous Rocks. Isotope Geology of Strontium in Sedimentary Rocks. The Sm-Nd Method of Dating. Isotope Geology of Neodymium and Strontium in Igneous Rocks. Isotope Geology of Neodymium in Sedimentary Rocks. The Lu-Hf Method of Dating. The RE-Os Method of Dating. The Re-Os Method of Dating. The K-Ca Method of Dating. The U, Th-Pb Methods of Dating. The Isotope Geology of Lead. The Fission-Track and Other Radiation Damage Methods of Dating. The U-Series Disequilibrium Methods of Dating. Cosmogenic Radionuclides. Cosmogenic Carbon-14 and Tritium. Carbon. Sulfur.

3,386 citations


"Locations of marine animals reveale..." refers methods in this paper

  • ...Application of the isoscape method to marine environments is complicated by the relatively homogenous spatial distributions of oxygen, hydrogen and strontium isotope ratios in seawate...

    [...]