scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios

01 Oct 2016-IEEE Wireless Communications (IEEE)-Vol. 23, Iss: 5, pp 60-67
TL;DR: This article introduces a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-gigahertz frequency bands, used to realize access networks with star topology referred to as low-power WANs (LPWANs).
Abstract: Connectivity is probably the most basic building block of the IoT paradigm. Up to now, the two main approaches to provide data access to things have been based on either multihop mesh networks using short-range communication technologies in the unlicensed spectrum, or long-range legacy cellular technologies, mainly 2G/GSM/GPRS, operating in the corresponding licensed frequency bands. Recently, these reference models have been challenged by a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-gigahertz frequency bands, used to realize access networks with star topology referred to as low-power WANs (LPWANs). In this article, we introduce this new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, particularly for typical smart city applications.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper aims to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time ofFlight (RTOF), and received signal strength (RSS) based on technologies that have been proposed in the literature.
Abstract: Indoor localization has recently witnessed an increase in interest, due to the potential wide range of services it can provide by leveraging Internet of Things (IoT), and ubiquitous connectivity. Different techniques, wireless technologies and mechanisms have been proposed in the literature to provide indoor localization services in order to improve the services provided to the users. However, there is a lack of an up-to-date survey paper that incorporates some of the recently proposed accurate and reliable localization systems. In this paper, we aim to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time of flight (RTOF), and received signal strength (RSS); based on technologies, such as WiFi, radio frequency identification device (RFID), ultra wideband (UWB), Bluetooth, and systems that have been proposed in the literature. This paper primarily discusses localization and positioning of human users and their devices. We highlight the strengths of the existing systems proposed in the literature. In contrast with the existing surveys, we also evaluate different systems from the perspective of energy efficiency, availability, cost, reception range, latency, scalability, and tracking accuracy. Rather than comparing the technologies or techniques, we compare the localization systems and summarize their working principle. We also discuss remaining challenges to accurate indoor localization.

1,447 citations


Cites background from "Long-range communications in unlice..."

  • ...Sallouha et al. [156] uses Ultra Narrowband (UNB) long-range IoT networks (Sigfox) for localization....

    [...]

  • ...10The uplink signal from the device is picked up by different LoRa gateways. as LoRA and Sigfox in its current shape cannot provide high localization accuracy and must be combined with other localization techniques and technologies for higher localization accuracy [158]....

    [...]

  • ...about 1 kilometer (km) [43], [44] in IEEE 802....

    [...]

  • ...Therefore IoT is going to be highly heterogeneous network that will leverage different communication and connectivity protocols such as cellular, WiFi, Bluetooth, ZigBee, UWB, RFIDs, Long Range Radio (LoRA) [43], Sigfox [43], [82] etc....

    [...]

  • ...We also provide an insight into emerging IoT technologies such as Sigfox, LoRA, IEEE 802.11ah, and weightless that can be potentially used for indoor localization....

    [...]

Journal ArticleDOI
09 Sep 2016-Sensors
TL;DR: An overview of LoRa and an in-depth analysis of its functional components are provided and some possible solutions for performance enhancements are proposed.
Abstract: LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.

1,126 citations

Journal ArticleDOI
TL;DR: It is shown that Sigfox and LoRa are advantageous in terms of battery lifetime, capacity, and cost, and NB-IoT offers benefits interms of latency and quality of service.

1,002 citations

Journal ArticleDOI
TL;DR: A comprehensive review related to emerging and enabling technologies with main focus on 5G mobile networks that is envisaged to support the exponential traffic growth for enabling the IoT.
Abstract: The Internet of Things (IoT) is a promising technology which tends to revolutionize and connect the global world via heterogeneous smart devices through seamless connectivity. The current demand for machine-type communications (MTC) has resulted in a variety of communication technologies with diverse service requirements to achieve the modern IoT vision. More recent cellular standards like long-term evolution (LTE) have been introduced for mobile devices but are not well suited for low-power and low data rate devices such as the IoT devices. To address this, there is a number of emerging IoT standards. Fifth generation (5G) mobile network, in particular, aims to address the limitations of previous cellular standards and be a potential key enabler for future IoT. In this paper, the state-of-the-art of the IoT application requirements along with their associated communication technologies are surveyed. In addition, the third generation partnership project cellular-based low-power wide area solutions to support and enable the new service requirements for Massive to Critical IoT use cases are discussed in detail, including extended coverage global system for mobile communications for the Internet of Things, enhanced machine-type communications, and narrowband-Internet of Things. Furthermore, 5G new radio enhancements for new service requirements and enabling technologies for the IoT are introduced. This paper presents a comprehensive review related to emerging and enabling technologies with main focus on 5G mobile networks that is envisaged to support the exponential traffic growth for enabling the IoT. The challenges and open research directions pertinent to the deployment of massive to critical IoT applications are also presented in coming up with an efficient context-aware congestion control mechanism.

951 citations

Journal ArticleDOI
TL;DR: The paper presents a brief overview of smart cities, followed by the features and characteristics, generic architecture, composition, and real-world implementations ofSmart cities, and some challenges and opportunities identified through extensive literature survey on smart cities.

925 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a cloud centric vision for worldwide implementation of Internet of Things (IoT) and present a Cloud implementation using Aneka, which is based on interaction of private and public Clouds, and conclude their IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.

9,593 citations

Journal ArticleDOI
TL;DR: This paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.
Abstract: The Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different and heterogeneous end systems, while providing open access to selected subsets of data for the development of a plethora of digital services. Building a general architecture for the IoT is hence a very complex task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we focus specifically to an urban IoT system that, while still being quite a broad category, are characterized by their specific application domain. Urban IoTs, in fact, are designed to support the Smart City vision, which aims at exploiting the most advanced communication technologies to support added-value services for the administration of the city and for the citizens. This paper hence provides a comprehensive survey of the enabling technologies, protocols, and architecture for an urban IoT. Furthermore, the paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.

4,335 citations

Journal ArticleDOI
01 Sep 2012
TL;DR: A survey of technologies, applications and research challenges for Internetof-Things is presented, in which digital and physical entities can be linked by means of appropriate information and communication technologies to enable a whole new class of applications and services.
Abstract: The term ‘‘Internet-of-Things’’ is used as an umbrella keyword for covering various aspects related to the extension of the Internet and the Web into the physical realm, by means of the widespread deployment of spatially distributed devices with embedded identification, sensing and/or actuation capabilities. Internet-of-Things envisions a future in which digital and physical entities can be linked, by means of appropriate information and communication technologies, to enable a whole new class of applications and services. In this article, we present a survey of technologies, applications and research challenges for Internetof-Things.

3,172 citations

Journal ArticleDOI
TL;DR: An overview of the network architecture and features of M2M communications in 3GPP are provided, and potential issues on the air interface are identified, including physical layer transmissions, the random access procedure, and radio resources allocation supporting the most critical QoS provisioning.
Abstract: To enable full mechanical automation where each smart device can play multiple roles among sensor, decision maker, and action executor, it is essential to construct scrupulous connections among all devices. Machine-to-machine communications thus emerge to achieve ubiquitous communications among all devices. With the merit of providing higher-layer connections, scenarios of 3GPP have been regarded as the promising solution facilitating M2M communications, which is being standardized as an emphatic application to be supported by LTE-Advanced. However, distinct features in M2M communications create diverse challenges from those in human-to-human communications. To deeply understand M2M communications in 3GPP, in this article, we provide an overview of the network architecture and features of M2M communications in 3GPP, and identify potential issues on the air interface, including physical layer transmissions, the random access procedure, and radio resources allocation supporting the most critical QoS provisioning. An effective solution is further proposed to provide QoS guarantees to facilitate M2M applications with inviolable hard timing constraints.

647 citations


"Long-range communications in unlice..." refers background in this paper

  • ...[7] S....

    [...]

  • ...From this perspective, wireless cellular networks may play a fundamental role in the diffusion of IoT, since they are able to provide ubiquitous and transparent coverage [1, 7]....

    [...]

01 Jun 2015
TL;DR: The central finding is that the hype may actually understate the full potential of the IoT—but that capturing it will require an understanding of where real value can be created and a successful effort to address a set of systems issues, including interoperability.
Abstract: The Internet of Things (IoT)—sensors and actuators connected by networks to computing systems—has received enormous attention over the past five years. A new McKinsey Global Institute report, The Internet of Things: Mapping the value beyond the hype, attempts to determine exactly how IoT technology can create real economic value. Our central finding is that the hype may actually understate the full potential—but that capturing it will require an understanding of where real value can be created and a successful effort to address a set of systems issues, including interoperability. To get a broader view of the IoT’s potential benefits and challenges across the global economy, we analyzed more than 150 use cases, ranging from people whose devices monitor health and wellness to manufacturers that utilize sensors to optimize the maintenance of equipment and protect the safety of workers. Our bottom-up analysis for the applications we size estimates that the IoT has a total potential economic impact of $3.9 trillion to $11.1 trillion a year by 2025. At the top end, that level of value—including the consumer surplus—would be equivalent to about 11 percent of the world economy.

585 citations