scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Long-range electron tunnelling in oligo-porphyrin molecular wires

TL;DR: It is shown that the conductance of the oligo-porphyrin wires has a strong dependence on temperature, and a weak dependence on the length of the wire, suggesting that the mechanism of long-range charge transport is phase-coherent electron tunnelling through the whole molecular junction.
Abstract: Short chains of porphyrin molecules can mediate electron transport over distances as long as 5–10 nm with low attenuation. This means that porphyrin-based molecular wires could be useful in nanoelectronic and photovoltaic devices, but the mechanisms responsible for charge transport in single oligo-porphyrin wires have not yet been established. Here, based on electrical measurements of single-molecule junctions, we show that the conductance of the oligo-porphyrin wires has a strong dependence on temperature, and a weak dependence on the length of the wire. Although it is widely accepted that such behaviour is a signature of a thermally assisted incoherent (hopping) mechanism, density functional theory calculations and an accompanying analytical model strongly suggest that the observed temperature and length dependence is consistent with phase-coherent tunnelling through the whole molecular junction.
Citations
More filters
Journal ArticleDOI
TL;DR: This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication.
Abstract: Creating functional electrical circuits using individual or ensemble molecules, often termed as “molecular-scale electronics”, not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlig...

949 citations

Journal ArticleDOI
TL;DR: This review aims to cover the multitude of synthetic methodologies that have been developed for the construction of conjugated porphyrin arrays as well as to summarise their structure-property relationships and use in various applications such as near infrared (NIR) dyes, nonlinear optical materials and electron-conducting molecular wires.
Abstract: Conjugated porphyrin arrays that possess delocalised electronic networks have, for the most part, been assembled by using alkene or alkyne type bridging units or by directly connecting individual porphyrin chromophores with multiple bonds to form fused porphyrin arrays. Throughout the last two decades, such conjugated porphyrin arrays have been actively explored due to their attractive electronic, optical and electrochemical properties. This review aims to cover the multitude of synthetic methodologies that have been developed for the construction of conjugated porphyrin arrays as well as to summarise their structure–property relationships and use in various applications such as near infrared (NIR) dyes, nonlinear optical materials and electron-conducting molecular wires.

496 citations

Journal ArticleDOI
TL;DR: This tutorial outlines the basic theoretical concepts and tools which underpin the fundamentals of phase-coherent electron transport through single molecules, and the strengths and limitations of materials-specific transport modelling based on density functional theory are discussed.
Abstract: This tutorial outlines the basic theoretical concepts and tools which underpin the fundamentals of phase-coherent electron transport through single molecules. The key quantity of interest is the transmission coefficient T(E), which yields the electrical conductance, current-voltage relations, the thermopower S and the thermoelectric figure of merit ZT of single-molecule devices. Since T(E) is strongly affected by quantum interference (QI), three manifestations of QI in single-molecules are discussed, namely Mach-Zehnder interferometry, Breit-Wigner resonances and Fano resonances. A simple MATLAB code is provided, which allows the novice reader to explore QI in multi-branched structures described by a tight-binding (Huckel) Hamiltonian. More generally, the strengths and limitations of materials-specific transport modelling based on density functional theory are discussed.

349 citations

Journal ArticleDOI
TL;DR: It is shown that the conductance properties of a single molecule can be correlated with its electronic states and the importance of the edge states and a planar geometry.
Abstract: The conductance properties of a narrow graphene nanoribbon are correlated with its electronic states over a wide range of bias voltages using a scanning tunnelling microscope

323 citations

Journal ArticleDOI
01 Mar 2019
TL;DR: In this article, the authors present the principles that have been developed for fabricating reliable molecular junctions and tuning their intrinsic properties from an engineering perspective, along with the open challenges in the field.
Abstract: Over the past two decades, various techniques for fabricating nano-gapped electrodes have emerged, promoting rapid development in the field of single-molecule electronics, on both the experimental and theoretical sides. To investigate intrinsic quantum phenomena and achieve desired functionalities, it is important to fully understand the charge transport characteristics of single-molecule devices. In this Review, we present the principles that have been developed for fabricating reliable molecular junctions and tuning their intrinsic properties from an engineering perspective. Through holistic consideration of the device structure, we divide single-molecule junctions into three intercorrelated components: the electrode, the contact (spacer–linker) interface and the molecular backbone or functional centre. We systematically discuss the selection of the electrode material and the design of the molecular components from the point of view of the materials, the interface and molecular engineering. The influence of the properties of these elements on the molecule–electrode interface coupling and on the relative energy gap between the Fermi level of the electrode and the orbital energy levels of the molecule, which directly influence the charge transport behaviour of single-molecule devices, is also a focus of our analysis. On the basis of these considerations, we examine various functionalities demonstrated in molecular junctions through molecular design and engineering. In this Review, the principles developed for fabricating reliable molecular junctions and tuning their intrinsic properties are examined from the point of view of the electrode, the interface and molecular engineering. The various functionalities demonstrated in molecular junctions through molecular design are discussed, along with the open challenges in the field.

299 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set, which includes multiple-zeta and polarization orbitals, was developed and implemented.
Abstract: We have developed and implemented a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set, which includes multiple-zeta and polarization orbitals. Exchange and correlation are treated with the local spin density or generalized gradient approximations. The basis functions and the electron density are projected on a real-space grid, in order to calculate the Hartree and exchange-correlation potentials and matrix elements, with a number of operations that scales linearly with the size of the system. We use a modified energy functional, whose minimization produces orthogonal wavefunctions and the same energy and density as the Kohn-Sham energy functional, without the need for an explicit orthogonalization. Additionally, using localized Wannier-like electron wavefunctions allows the computation time and memory required to minimize the energy to also scale linearly with the size of the system. Forces and stresses are also calculated efficiently and accurately, thus allowing structural relaxation and molecular dynamics simulations.

8,723 citations

Journal ArticleDOI
29 Aug 2003-Science
TL;DR: The conductance of a single molecule connected to two gold electrodes was determined by repeatedly forming thousands of gold-molecule-gold junctions using conductance histograms, which revealed well-defined peaks at integer multiples of a fundamental conductance value.
Abstract: The conductance of a single molecule connected to two gold electrodes was determined by repeatedly forming thousands of gold-molecule-gold junctions. Conductance histograms revealed well-defined peaks at integer multiples of a fundamental conductance value, which was used to identify the conductance of a single molecule. The resistances near zero bias were 10.5 +/- 0.5, 51 +/- 5, 630 +/- 50, and 1.3 +/- 0.1 megohms for hexanedithiol, octanedithiol, decanedithiol, and 4,4' bipyridine, respectively. The tunneling decay constant (betaN) for N-alkanedithiols was 1.0 +/- 0.1 per carbon atom and was weakly dependent on the applied bias. The resistance and betaN values are consistent with first-principles calculations.

1,970 citations

Journal ArticleDOI
24 Aug 2006-Nature
TL;DR: Amine link groups are used to form single-molecule junctions with more reproducible current–voltage characteristics and it is found that the conductance for the series decreases with increasing twist angle, consistent with a cosine-squared relation predicted for transport through π-conjugated biphenyl systems.
Abstract: Since it was first suggested1 that a single molecule might function as an active electronic component, a number of techniques have been developed to measure the charge transport properties of single molecules2,3,4,5,6,7,8,9,10,11,12. Although scanning tunnelling microscopy observations under high vacuum conditions can allow stable measurements of electron transport, most measurements of a single molecule bonded in a metal–molecule–metal junction exhibit relatively large variations in conductance. As a result, even simple predictions about how molecules behave in such junctions have still not been rigorously tested. For instance, it is well known13,14 that the tunnelling current passing through a molecule depends on its conformation; but although some experiments have verified this effect15,16,17,18, a comprehensive mapping of how junction conductance changes with molecular conformation is not yet available. In the simple case of a biphenyl—a molecule with two phenyl rings linked by a single C–C bond—conductance is expected to change with the relative twist angle between the two rings, with the planar conformation having the highest conductance. Here we use amine link groups to form single-molecule junctions with more reproducible current–voltage characteristics19. This allows us to extract average conductance values from thousands of individual measurements on a series of seven biphenyl molecules with different ring substitutions that alter the twist angle of the molecules. We find that the conductance for the series decreases with increasing twist angle, consistent with a cosine-squared relation predicted for transport through π-conjugated biphenyl systems13.

1,266 citations


"Long-range electron tunnelling in o..." refers methods in this paper

  • ...The key difference between the I ( s ) technique and the in situ break-junction metho...

    [...]

Journal ArticleDOI
TL;DR: An overview of some of the recent advances in electron transport through molecules attached to electrodes is presented and issues, including molecule–electrode contacts, local heating- and current-induced instabilities, stochastic fluctuations and the development of characterization tools are discussed.
Abstract: Building an electronic device using individual molecules is one of the ultimate goals in nanotechnology. To achieve this it will be necessary to measure, control and understand electron transport through molecules attached to electrodes. Substantial progress has been made over the past decade and we present here an overview of some of the recent advances. Topics covered include molecular wires, two-terminal switches and diodes, three-terminal transistor-like devices and hybrid devices that use various different signals (light, magnetic fields, and chemical and mechanical signals) to control electron transport in molecules. We also discuss further issues, including molecule-electrode contacts, local heating- and current-induced instabilities, stochastic fluctuations and the development of characterization tools.

1,222 citations


"Long-range electron tunnelling in o..." refers methods in this paper

  • ...The key difference between the I ( s ) technique and the in situ break-junction metho...

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated theoretically that organic spin valves, obtained by sandwiching an organic molecule between magnetic contacts, can show a large bias-dependent magnetoresistance and that this can be engineered by an appropriate choice of molecules and anchoring groups.
Abstract: The ability to manipulate electron spin in organic molecular materials offers a new and extremely tantalizing route towards spin electronics, both from fundamental and technological points of view. This is mainly due to the unquestionable advantage of weak spin–orbit and hyperfine interactions in organic molecules, which leads to the possibility of preserving spin-coherence over times and distances much longer than in conventional metals or semiconductors. Here we demonstrate theoretically that organic spin valves, obtained by sandwiching an organic molecule between magnetic contacts, can show a large bias-dependent magnetoresistance and that this can be engineered by an appropriate choice of molecules and anchoring groups. Our results, obtained through a combination of state-of-the-art non-equilibrium transport methods and density functional theory, show that although the magnitude of the effect varies with the details of the molecule, large magnetoresistance can be found both in the tunnelling and the metallic limit.

1,113 citations