scispace - formally typeset

Journal ArticleDOI

Long term immunologic consequences of experimental stroke and mucosal tolerance

21 Oct 2009-Experimental & Translational Stroke Medicine (BioMed Central)-Vol. 1, Iss: 1, pp 3-3

TL;DR: Induction of immunological tolerance to MBP is associated with improved outcome after stroke, however, this study raises concern about the potential for inadvertent induction of detrimental autoimmunity through mucosal administration of antigen.

AbstractAn inflammatory insult following middle cerebral artery occlusion (MCAO) is associated with a predisposition to develop a deleterious autoimmune response to the brain antigen myelin basic protein (MBP). Induction of immunologic tolerance to brain antigens prior to MCAO prevents this deleterious autoimmune response and is associated with better functional outcome early after stroke. In this study, we sought to determine the long term immunologic consequences of experimental stroke and induction of mucosal tolerance. Male Lewis rats were tolerized to MBP or ovalbumin (OVA) by intranasal administration prior to MCAO and administration of lipopolysaccharide (LPS). Neurological outcome was assessed at set points after MCAO and animals sacrificed at 3 months; the immune response to MBP in brain and spleen was determined using ELISPOT assay and degree of cellular inflammatory brain infiltrate assessed by immunocytochemistry. Animals that developed a pro-inflammatory (TH 1) response to MBP experienced worse outcome, while those that developed a regulatory response (TREG) experienced better outcome. A TREG response in spleen was also associated with decreased inflammation and an increase in the number of FoxP3 positive cells in brain. In this study, tolerization to MBP prior to MCAO was associated with a tendency to develop a TH 1 response to MBP by 3 months after MCAO. These data show that induction of immunological tolerance to MBP is associated with improved outcome after stroke. This study, however, raises concern about the potential for inadvertent induction of detrimental autoimmunity through mucosal administration of antigen.

Topics: Immunologic Tolerance (55%), FOXP3 (50%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
TL;DR: Gaining a better understanding of the reciprocal interaction between the immune system and the ischemic brain is essential to harness the full therapeutic potential of the immunology of stroke.
Abstract: Immunity and inflammation are key elements of the pathobiology of stroke, a devastating illness second only to cardiac ischemia as a cause of death worldwide. The immune system participates in the brain damage produced by ischemia, and the damaged brain, in turn, exerts an immunosuppressive effect that promotes fatal infections that threaten the survival of people after stroke. Inflammatory signaling is involved in all stages of the ischemic cascade, from the early damaging events triggered by arterial occlusion to the late regenerative processes underlying post-ischemic tissue repair. Recent developments have revealed that stroke engages both innate and adaptive immunity. But adaptive immunity triggered by newly exposed brain antigens does not have an impact on the acute phase of the damage. Nevertheless, modulation of adaptive immunity exerts a remarkable protective effect on the ischemic brain and offers the prospect of new stroke therapies. As immunomodulation is not devoid of deleterious side effects, a better understanding of the reciprocal interaction between the immune system and the ischemic brain is essential to harness the full therapeutic potential of the immunology of stroke.

1,620 citations


Cites background from "Long term immunologic consequences ..."

  • ...Worsening in the chronic phase has also been reported in tolerization applied to models of cerebral ischemi...

    [...]


Journal ArticleDOI
TL;DR: The multifaceted role of the immune system in the pathophysiology of acute stroke is discussed, with increased incidence of infections observed after acute stroke, and might result from activation of long-distance feedback loops between the CNS and peripheral immune organs.
Abstract: Recent clinical and experimental studies have highlighted a complex role for the immune system in the pathophysiological changes that occur after acute stroke. Sensors of the innate immune system such as Toll-like receptors, or effectors such as the lectin pathway of complement activation and innate immune cells, are activated by brain ischaemia and tissue damage, leading to amplification of the inflammatory cascade. Activation of the adaptive arm of the immune system, mediated by lymphocyte populations including T and B cells, regulatory T cells, and γδT cells, in response to stroke can lead to deleterious antigen-specific autoreactive responses but can also have cytoprotective effects. Increased incidence of infections is observed after acute stroke, and might result from activation of long-distance feedback loops between the CNS and peripheral immune organs, which are thought to play a part in stroke-induced immunodepression. Ongoing clinical trials are investigating whether the preventive use of antibiotics improves functional outcome after stroke. This Review discusses the multifaceted role of the immune system in the pathophysiology of acute stroke.

432 citations


Journal ArticleDOI
TL;DR: The selective responses of microglia and macrophages to hypoxia after stroke are discussed and relevant markers are reviewed with the aim of defining the different subpopulations of myeloid cells that are recruited to the injured site.
Abstract: Cells of myeloid origin, such as microglia and macrophages, act at the crossroads of several inflammatory mechanisms during pathophysiology. Besides pro-inflammatory activity (M1 polarization), myeloid cells acquire protective functions (M2) and participate in the neuroprotective innate mechanisms after brain injury. Experimental research is making considerable efforts to understand the rules that regulate the balance between toxic and protective brain innate immunity. Environmental changes affect microglia/macrophage functions. Hypoxia can affect myeloid cell distribution, activity, and phenotype. With their intrinsic differences, microglia and macrophages respond differently to hypoxia, the former depending on ATP to activate and the latter switching to anaerobic metabolism and adapting to hypoxia. Myeloid cell functions include homeostasis control, damage-sensing activity, chemotaxis, and phagocytosis, all distinctive features of these cells. Specific markers and morphologies enable to recognize each functional state. To ensure homeostasis and activate when needed, microglia/macrophage physiology is finely tuned. Microglia are controlled by several neuron-derived components, including contact-dependent inhibitory signals and soluble molecules. Changes in this control can cause chronic activation or priming with specific functional consequences. Strategies, such as stem cell treatment, may enhance microglia protective polarization. This review presents data from the literature that has greatly advanced our understanding of myeloid cell action in brain injury. We discuss the selective responses of microglia and macrophages to hypoxia after stroke and review relevant markers with the aim of defining the different subpopulations of myeloid cells that are recruited to the injured site. We also cover the functional consequences of chronically active microglia and review pivotal works on microglia regulation that offer new therapeutic possibilities for acute brain injury.

166 citations


Cites background from "Long term immunologic consequences ..."

  • ...Quite possibly T-cell activation needs to be finely tuned to yield a tolerization state, associated with protective action (103, 104), rather than an aggressive (auto)-immune response....

    [...]


Journal ArticleDOI
TL;DR: The sustained presence of Tregs in the brain after MCAO indicates a long-lasting immunological alteration and involvement of brain cells in immunoregulatory mechanisms.
Abstract: Local and peripheral immune responses are activated after ischemic stroke. In our present study, we investigated the temporal distribution, location, induction, and function of regulatory T cells (Tregs) and the possible involvement of microglia, macrophages, and dendritic cells after middle cerebral artery occlusion (MCAO). C57BL/6J and Foxp3EGFP transgenic mice were subjected to 30 minutes MCAO. On days 7, 14, and 30 after MCAO, Tregs and antigen presenting cells were analyzed using fluorescence activated cell sorting multicolor staining and immunohistochemistry. A strong accumulation of Tregs was observed on days 14 and 30 in the ischemic hemisphere accompanied by the elevated presence and activation of microglia. Dendritic cells and macrophages were found on each analyzed day. About 60% of Foxp3+ Tregs in ischemic hemispheres were positive for the proliferation marker Ki-67 on days 7 and 14 after MCAO. The transfer of naive CD4+ cells depleted of Foxp3+ Tregs into RAG1−/− mice 1 day before MCAO did not lead to a de novo generation of Tregs 14 days after surgery. After depletion of CD25+ Tregs, no changes regarding neurologic outcome were detected. The sustained presence of Tregs in the brain after MCAO indicates a long-lasting immunological alteration and involvement of brain cells in immunoregulatory mechanisms.

111 citations


Journal ArticleDOI
TL;DR: Understanding how tumors induce Treg function to escape immune surveillance in marked contrast to autoimmune diseases will provide valuable lessons regarding Treg biology and potential therapeutic targets for CNS diseases.
Abstract: Regulatory T cells (Tregs) are critical to the human immune system, providing appropriately scaled immune responses and mediating peripheral tolerance. A central role for forkhead box protein 3 (FoxP3)(+) Tregs has been shown in the pathogenesis of mechanistically diverse central nervous system (CNS) diseases from autoimmune diseases such as multiple sclerosis to glioblastomas. Understanding how tumors induce Treg function to escape immune surveillance in marked contrast to autoimmune diseases, where there is loss of Treg function, will provide valuable lessons regarding Treg biology and potential therapeutic targets for CNS diseases.

100 citations


Cites background from "Long term immunologic consequences ..."

  • ...Induction of mucosal tolerance to brain antigens after middle cerebral artery occlusion (MCAO) was associated with improved outcome and a reduction in infarct volume in the hours to days after stroke onset (92–95), but this was only beneficial up to a month (96)....

    [...]


References
More filters

Journal ArticleDOI
01 Jan 1989-Stroke
TL;DR: Seven of eight rats that underwent permanent occlusion of the MCA had resolving moderately severe neurologic deficits and unilateral infarcts averaging 37.6 +/- 5.5% of the coronal sectional area at 72 hours after the onset of Occlusion.
Abstract: To develop a simple, relatively noninvasive small-animal model of reversible regional cerebral ischemia, we tested various methods of inducing infarction in the territory of the right middle cerebral artery (MCA) by extracranial vascular occlusion in rats. In preliminary studies, 60 rats were anesthetized with ketamine and different combinations of vessels were occluded; blood pressure and arterial blood gases were monitored. Neurologic deficit, mortality rate, gross pathology, and in some instances, electroencephalogram and histochemical staining results were evaluated in all surviving rats. The principal procedure consisted of introducing a 4-0 nylon intraluminal suture into the cervical internal carotid artery (ICA) and advancing it intracranially to block blood flow into the MCA; collateral blood flow was reduced by interrupting all branches of the external carotid artery (ECA) and all extracranial branches of the ICA. In some groups of rats, bilateral vertebral or contralateral carotid artery occlusion was also performed. India ink perfusion studies in 20 rats documented blockage of MCA blood flow in 14 rats subjected to permanent occlusion and the restoration of blood flow to the MCA territory in six rats after withdrawal of the suture from the ICA. The best method of MCA occlusion was then selected for further confirmatory studies, including histologic examination, in five additional groups of rats anesthetized with halothane. Seven of eight rats that underwent permanent occlusion of the MCA had resolving moderately severe neurologic deficits (Grade 2 of 4) and unilateral infarcts averaging 37.6 +/- 5.5% of the coronal sectional area at 72 hours after the onset of occlusion.(ABSTRACT TRUNCATED AT 250 WORDS)

5,813 citations


Additional excerpts

  • ...0) was inserted into the common carotid artery and advanced into the internal carotid artery [11]; 20 OVA tolerized and 25 MBP tolerized animals were subjected to MCAO....

    [...]


Journal ArticleDOI
01 May 1986-Stroke
Abstract: We have examined the incidence and size of infarction after occlusion of different portions of the rat middle cerebral artery (MCA) in order to define the reliability and predictability of this model of brain ischemia. We developed a neurologic examination and have correlated changes in neurologic status with the size and location of areas of infarction. The MCA was surgically occluded at different sites in six groups of normal rats. After 24 hr, rats were evaluated for the extent of neurologic deficits and graded as having severe, moderate, or no deficit using a new examination developed for this model. After rats were sacrificed the incidence of infarction was determined at histologic examination. In a subset of rats, the size of the area of infarction was measured as a percent of the area of a standard coronal section. Focal (1-2 mm) occlusion of the MCA at its origin, at the olfactory tract, or lateral to the inferior cerebral vein produced infarction in 13%, 67%, and 0% of rats, respectively (N = 38) and produced variable neurologic deficits. However, more extensive (3 or 6 mm) occlusion of the MCA beginning proximal to the olfactory tract--thus isolating lenticulostriate end-arteries from the proximal and distal supply--produced infarctions of uniform size, location, and with severe neurologic deficit (Grade 2) in 100% of rats (N = 17). Neurologic deficit correlated significantly with the size of the infarcted area (Grade 2, N = 17, 28 +/- 5% infarction; Grade 1, N = 5, 19 +/- 5%; Grade 0, N = 3, 10 +/- 2%; p less than 0.05). We have characterized precise anatomical sites of the MCA that when surgically occluded reliably produce uniform cerebral infarction in rats, and have developed a neurologic grading system that can be used to evaluate the effects of cerebral ischemia rapidly and accurately. The model will be useful for experimental assessment of new therapies for irreversible cerebral ischemia.

2,343 citations


Additional excerpts

  • ...Neurological status was assessed at set time points after MCAO; tests included a modification of the Bederson scale and an adaptation of the 'sticky tape test' [12,13]....

    [...]


Journal ArticleDOI
TL;DR: It is suggested that a catecholamine-mediated defect in early lymphocyte activation is the key factor in the impaired antibacterial immune response after stroke.
Abstract: Infections are a leading cause of death in stroke patients. In a mouse model of focal cerebral ischemia, we tested the hypothesis that a stroke-induced immunodeficiency increases the susceptibility to bacterial infections. 3 d after ischemia, all animals developed spontaneous septicemia and pneumonia. Stroke induced an extensive apoptotic loss of lymphocytes and a shift from T helper cell (Th)1 to Th2 cytokine production. Adoptive transfer of T and natural killer cells from wild-type mice, but not from interferon (IFN)-γ–deficient mice, or administration of IFN-γ at day 1 after stroke greatly decreased the bacterial burden. Importantly, the defective IFN-γ response and the occurrence of bacterial infections were prevented by blocking the sympathetic nervous system but not the hypothalamo-pituitary-adrenal axis. Furthermore, administration of the β-adrenoreceptor blocker propranolol drastically reduced mortality after stroke. These data suggest that a catecholamine-mediated defect in early lymphocyte activation is the key factor in the impaired antibacterial immune response after stroke.

709 citations


Additional excerpts

  • ...Despite the initial inflammatory response in the brain and periphery after stroke, the immune system later becomes incapable of adequately responding to pathogens, predisposing animals to infection [3]....

    [...]


Journal ArticleDOI
TL;DR: It is demonstrated that T cells that are specific for different myelin epitopes generate populations characterized by different T helper type 17 (TH17) to T helpertype 1 (TH1) ratios depending on the functional avidity of interactions between TCR and peptide-MHC complexes.
Abstract: Multiple sclerosis is an inflammatory, demyelinating disease of the central nervous system (CNS) characterized by a wide range of clinical signs1 The location of lesions in the CNS is variable and is a crucial determinant of clinical outcome Multiple sclerosis is believed to be mediated by myelin-specific T cells, but the mechanisms that determine where T cells initiate inflammation are unknown Differences in lesion distribution have been linked to the HLA complex, suggesting that T cell specificity influences sites of inflammation2 We demonstrate that T cells that are specific for different myelin epitopes generate populations characterized by different T helper type 17 (TH17) to T helper type 1 (TH1) ratios depending on the functional avidity of interactions between TCR and peptide-MHC complexes Notably, the TH17:TH1 ratio of infiltrating T cells determines where inflammation occurs in the CNS Myelin-specific T cells infiltrate the meninges throughout the CNS, regardless of the TH17:TH1 ratio However, T cell infiltration and inflammation in the brain parenchyma occurs only when TH17 cells outnumber TH1 cells and trigger a disproportionate increase in interleukin-17 expression in the brain In contrast, T cells showing a wide range of TH17:TH1 ratios induce spinal cord parenchymal inflammation These findings reveal critical differences in the regulation of inflammation in the brain and spinal cord

560 citations


Additional excerpts

  • ...Further, the ratio of antigen specific TH17 to TH1 cells can determine the nature of the autoimmune disease [25]....

    [...]


Journal ArticleDOI
TL;DR: Data show for the first time that focal cerebral ischemia results in dynamic and widespread activation of inflammatory cytokines, chemokines, and CCR in the peripheral immune system.
Abstract: Clinical experimental stroke induces injurious local brain inflammation. However, effects on the peripheral immune system have not been well characterized. We quantified mRNA and protein levels for cytokines, chemokines, and chemokine receptors (CCR) in brain, spinal cord, peripheral lymphoid organs (spleen, lymph node, blood, and cultured mononuclear cells from these sources), and blood plasma after reversible middle cerebral artery occlusion (MCAO) or sham treatment in male C57BL/6 mice. Middle cerebral artery occlusion induced a complex, but organ specific, pattern of inflammatory factors in the periphery. At both 6 and 22 h after MCAO, activated spleen cells from stroke-injured mice secreted significantly enhanced levels of TNF-alpha, IFN-gamma, IL-6, MCP-1, and IL-2. Unstimulated splenocytes expressed increased chemokines and CCR, including MIP-2 and CCR2, CCR7 and CCR8 at 6 h; and MIP-2, IP-10, and CCR1 and CCR2 at 22 h. Also at 22 h, T cells from blood and lymph nodes secreted increased levels of inflammatory cytokines after activation. As expected, there were striking proinflammatory changes in postischemic brain. In contrast, spinal cord displayed suppression of all mediators, suggesting a compensatory response to intracranial events. These data show for the first time that focal cerebral ischemia results in dynamic and widespread activation of inflammatory cytokines, chemokines, and CCR in the peripheral immune system.

448 citations


Additional excerpts

  • ...Immediately after experimental stroke, peripheral blood lymphocytes and splenocytes become activated and are capable of secreting massive amounts of proinflammatory cytokines [1]....

    [...]